
Topics

Who this book is for ........................................................................................ 2

What this book is about .................................................................................. 2

New features for developers .......................................................................... 5

Sample shapes and code ................................................................................ 6

Online reference material ............................................................................... 6

Conventions ..................................................................................................... 7

Preface

Developing Visio Solutions is a complete guide to creating graphic
solutions with the Visio® Professional, Visio® Technical, and
Visio® Standard drawing applications. It includes:

• A conceptual introduction to the Visio development environment
and the tools you can use to create real-world solutions.

• Details about developing your own shapes, stencils, and templates.

• Code samples, tips, and techniques for using Automation
(formerly OLE Automation) to extend Visio or use Visio as
a component in your own applications.

This Preface defines the book’s intended audience, purpose, and
assumptions.



2 P  R  E  F  A  C  E

Who this book is for

This book is for architects, engineers, users of CAD programs, appli-
cation developers, system analysts, programmers, and anyone who
wants to customize Visio shapes or solutions. We assume you are al-
ready familiar with drawing techniques and with the Visio menus,
tools, and commands.

We also assume a high-school–level knowledge of basic geometry and
Cartesian coordinate systems. An understanding of transformations,
trigonometry, and analytic geometry can also be helpful.

In the chapters that explain how to use Automation to control Visio,
we assume you are familiar with the programming language you’ll be
using. Most of the examples in this book are written in Microsoft
Visual Basic for Applications (VBA).

What this book is about

This book is about developing solutions—combinations of shapes
and programs that model the real world and solve specific drawing
problems.

Using Visio shapes to create solutions
A Visio solution may not always involve a program or even a tem-
plate, but it will almost always involve shapes. The first thing to know
about Visio shapes is this: There’s more to a shape than what you see
on the drawing page—there’s Visio SmartShapes® technology.

Every Visio shape includes an assortment of formulas that represent
its attributes, such as its width and height, and its behavior, such as
what the shape does when a user double-clicks it. You can create your
own formulas that model a shape’s appearance and behavior after the
real-world object you want it to represent. So, for example, you can
associate important data—part numbers, names, manufacturers—
with shapes representing office equipment. Your shapes can then
become powerful components whose unique behavior within a larger
solution is provided by the formulas you write.



P R E F A C E 3

You can view and edit a shape’s formulas in the Visio ShapeSheet™
spreadsheet. For details about working in the ShapeSheet window, see
Chapter 2, “Tools for creating solutions.” For details about techniques
you can use to control shapes with formulas, see Chapters 3 through 9
in Part II, “Developing Visio Shapes.”

Using SmartShapes technology
A solution rarely consists of a single shape. More often you’ll develop
a suite of shapes that support a particular kind of drawing, and you’ll
assemble these shapes as masters in a Visio stencil.

A master is a shape in a stencil that you use to create instances, or
shapes, based on the master. Instances inherit many of their charac-
teristics from the master.

When a user drags a master onto a drawing page, Visio automatically
creates a copy of that master in the drawing’s local stencil. The local
stencil is stored in the drawing file itself. This has two major benefits:

• First, the drawing is entirely self-contained and portable. Once
the user creates the drawing, he or she no longer needs your
stencil.

• Second, characteristics of instances can be changed in the
drawing by editing the master in the local stencil.

To help the user create the drawing, you’ll often provide a template. A
template can set up the drawing page with a uniform grid and scale,
include specific styles and layers, and provide shapes already on the
drawing page. A template can also open one or more stencils. When
the user creates a drawing based on a template, Visio opens the sten-
cils and creates a new drawing file, copying the template’s styles and
other properties to the new file. As with the stencil, once the user cre-
ates the drawing, he or she no longer needs the template.

For details about creating and testing stencils and templates, see
Chapter 9, “Packaging stencils and templates.”



4 P  R  E  F  A  C  E

Writing programs to control Visio
Some solutions require more than shapes, stencils, and templates. For
example, you might need to create drawings based on data that
changes from day to day, or perform routine shape development tasks
over and over. You may support users who need to create drawings
but don’t want to become Visio experts, or you may use their draw-
ings as a source of data for other purposes.

You can automate such tasks by using Automation to incorporate the
functionality of Visio, simply by using its objects. If you’re familiar
with VBA, you use objects all the time—controls such as command
buttons, user forms, databases, and fields. With Automation, you can
use other applications’ objects as well. Drawings, masters, shapes, and
even the Visio menus and tools can become components of your pro-
grams. A program can run within an instance of Visio or start Visio
and then access the objects it needs.

Visio Standard, Visio Technical, and Visio Professional include VBA,
so you don’t need to use a separate development environment to
write your programs. However, you can write programs that control
Visio in any language that supports Automation as a controller. Most
of the examples in this book are in VBA, but the principles apply to
any programming language.

For suggestions on how to plan an Automation solution that uses
Visio, see the chapters in Part III, “Extending Visio with Automation”
beginning with Chapter 10, “Automation and Visio.” For an introduc-
tion to the Visio object model, see Chapter 11, “Using Visio objects.”
Chapters 12 through 18 explain various programming techniques
you can use to create and work with drawings and shapes, customize
the Visio user interface, and run your programs. For details about
using other programming languages, see Chapter 19, “Programming
Visio with Visual Basic,” and Chapter 20, “Programming Visio
with C++.”



P R E F A C E 5

New features for developers

The 5.0 release of Visio Standard, Visio Technical, and Visio
Professional gives you a single platform for your custom solutions.
Take advantage of these new features and tools:

Visio as an ActiveX container. Add ActiveX controls directly to Visio
5.0 drawings to make your Visio solution interactive. Or add custom
controls that you develop or purchase to incorporate more complex
functionality.

Connection events. Use the new ConnectionsAdded and
ConnectionsDeleted events to monitor the addition and removal of
connections between shapes.

Paths and Curves objects. Use these new objects to report the points
along a shape’s strokes.

Custom patterns. Create your own fill patterns, line patterns, and line
ends that your users can apply to shapes as they do the built-in Visio
styles.

Dynamic connectors. Design your solutions to work with the built-in
dynamic connector and automatic layout technology or create your
own routable connectors.

Named connection points. Assign names to the Connections.Row cell
for clearer cell references, and use the new data cells in a connection
points row to store associated formulas.

Developer toolbar. Use the Developer toolbar for quick access to the
ShapeSheet window and VBA.

Improved ShapeSheet help. Press F1 in a ShapeSheet cell to display an
online help topic for that cell.

Open Document Management API (ODMA) support. Take advantage of
support for ODMA with third-party tools that manage document
workflow, so you can track revisions and provide check-in and check-
out services.

Hyperlinking. Use the improved ShapeSheet support to create hyper-
links from Visio shapes and drawing pages.



6 P  R  E  F  A  C  E

Sample shapes and code

The Visio CD includes sample shapes and source code for the ex-
amples shown in this book, so you can study and work with them as
you read. These files are installed in the \VISIO\DVS folder (or the
folder that contains Visio). For details about the \DVS folder contents,
see the file \DVS\README.TXT.

Summary of \DVS folder contents

Folder Contents

\DVS OBJECT TABLE.DOC, lists of methods and

properties by object and by name, and

OBJECT MODEL.VSD, the Visio object model.

\DVS\LIBRARIES Folders of C++ source code described in

Chapter 20 and Visual Basic utility programs.

\DVS\SAMPLE APPLICATIONS Files for the Stencil Report Wizard, the sample

application described in Chapter 12.

\DVS\SHAPE SOLUTIONS Stencil of shapes described in Chapters 3–9.

\DVS\VB SOLUTIONS Visual Basic source code described in

Chapter 19 and other sample programs.

\DVS\VBA SOLUTIONS Template containing VBA macros described

in Chapters 10–18 and other useful macros.

Online reference material

In addition to the information provided in Developing Visio Solutions,
you have online access to the following detailed reference information:

Shape developer’s reference. A complete list of ShapeSheet cells and
Visio functions. To display it, from the Help menu, choose Visio Help,
click Contents, and then choose Reference.

Visio Automation Reference. The PROGREF.HLP file that describes the
Visio objects, properties, and methods that you can access from
an external program. To display it, from the Help menu, choose
Visio Help, and then choose Automation Reference.

“DevWeb”. The Visio Solutions Development Web page, which you
can access from the Visio home page at http://www.visio.com/
devweb/.

Installing help and sample files

If while using Visio you receive a message
that PROGREF.HLP cannot be found, or if you
cannot locate a sample file referred to in
this book, you can install it from the Visio CD.
PROGREF.HLP, or the Automation Reference,
is installed with the Help files when you in-
stall Visio Standard, Visio Professional, or
Visio Technical. The sample files are in-
stalled with the component called
Developing Visio Solutions. These options
are included on the Setup program’s Select
Components screen.



P R E F A C E 7

Conventions

This book uses the following typographical conventions.

Typographical conventions

Convention Description

bold Programming language terms in text.

italic Variables in text or terms defined in text. In syntax,

italic letters indicate placeholders for information

you supply.

EmbeddedCaps Capitalization for readability in Visio and VBA.

Language terms are not case-sensitive in Visio or

VBA, but they are case-sensitive in C++.

SMALL CAPS File names in text.

monospace font Code examples.

In addition, to enhance readability of formula and code samples in
this book, these conventions are followed:

• Within Visio formulas, we have inserted spaces before and after
operators and equal signs (=). These spaces are not required and
are removed by Visio if you enter them with your formula.

• In code examples, we have used numeric and string constants
where you would ordinarily use variables or global constants,
especially if you intend to localize your programs.





P
 A

 R
 T   I

The Visio Development
Environment

PART   I



1 0 P  R  E  F  A  C  E



Topics in this chapter

Modeling with Visio ...................................................................................... 12

Drawing with objects .................................................................................... 13

Integrating data with shapes ........................................................................ 18

Automating Visio ........................................................................................... 20

1

Introduction

A software solution typically combines a custom program with one
or more shrink-wrapped applications. Rather than developing func-
tionality from scratch, the solution developer uses functionality that
is built into a shrink-wrapped product and exposed by a mechanism
such as Automation (formerly OLE Automation). Visio offers the
solution developer programmable shapes and easy access to sophisti-
cated graphics functionality.

This chapter introduces the features that Visio offers and some con-
cepts that will help you decide how to use them. For details about the
tools Visio provides for implementing a solution, see Chapter 2,
“Tools for creating solutions.”

NOTE  To get the most out of this chapter and the rest of this book,
you should be familiar with Visio menu commands and tools and
with the programming language you intend to use to develop your
solution. The best way to get acquainted with Visio is to create a
drawing or two. If you haven’t yet done this, we recommend that you
do it now before continuing with this book. Also, locate the Visio on-
line help so you can find out more about the basics if you have
questions about them while reading this book.



1 2 C  H  A  P  T  E  R    1

Modeling with Visio

A model helps you analyze and solve a problem using objects that re-
semble things in the domain of the model, whether that’s the
organization of people in your department, the arrangement of desks
and chairs in a floor plan, the network you’re selling to a customer, or
a state diagram for an integrated circuit.

Obviously, Visio shapes can represent the objects in a model graphi-
cally. However, they can do much more:

• Visio shapes are programmable through ShapeSheet formulas,
so you can make them behave like the objects they represent in
the real world.

• Visio shapes, drawings, and even Visio itself can be controlled by
external programs through Automation, so you can automatically
generate drawings, extract data from them, and check their
correctness.

• Visio shapes can have meaningful data associated with them, so
they can more closely represent real-world objects.

Visio is an excellent tool for solutions that involve modeling, because
you can design Visio shapes to behave like objects in your problem
domain. A Visio drawing and the shapes it contains are reusable tools
that help you analyze, communicate, and make decisions.

Designing a Visio solution

In a well-designed solution, shapes corre-
spond to objects in the problem domain, and
creating a drawing constructs a model.
Shapes are designed to encourage correct
modeling and graphical representation, but
they don’t prevent the user from overriding
default behavior to produce a readable
representation. Other parts of the solution
work together with the shapes to help the
user create a correct model.



I N T R O D U C T I O N 13

Drawing with objects

If you’re accustomed to thinking about graphics as a collection of
vectors, Visio lets you think about graphics in a whole new way. Visio
shapes are parametric—that is, they can adjust their geometry and
other attributes according to the values of certain parameters. Instead
of fixed geometry based on hard-coded x,y coordinates, a shape’s
geometry is based on formulas that recalculate dynamically as a user
manipulates the shape. Instead of drafting with lines, you’re drawing
with objects.

Bol t  length

H e a d
diameter

Th read
length

H e a d
th ickness

Bol t
d iameter

In this bolt shape, the bolt length, thread length, and bolt diameter
are parameters that are controlled by formulas. The head diameter
and head thickness are derived from these parameters.

These parameters are independent of each other, within practical
physical limits. The user could set them by dragging the selection
handles to change the bolt length or bolt diameter, or by dragging the
control handle to change the thread length. A program could set
them with numerical data from a manufacturer’s database of avail-
able sizes.

Designing shapes

The best solutions in Visio often begin right
on the drawing page, where you design
shapes. Although you could define much of
the custom behavior your solution needs in
an external program, you’ll get superior
results faster by taking advantage of the
built-in functionality of Visio shapes. If you
design intelligence into your shapes, you
can build a more flexible solution that
requires less coding and maintenance in
the long run.

Chapters 3 through 9 in Part II, “Developing
Visio Shapes,” discuss techniques for
developing custom shapes.



1 4 C  H  A  P  T  E  R    1

SmartShapes technology
Using Visio SmartShapes technology, you can develop shapes that be-
have like the objects they represent in the real world, modeling the
characteristics that are meaningful for the kinds of diagrams you
need to create. You do this by defining formulas that make the shapes
behave the way they should according to the design rules, codes,
or principles that apply to the corresponding objects.

Every Visio shape has its own ShapeSheet spreadsheet, which defines
the shape’s unique behavior and capabilities. Think of the
ShapeSheet spreadsheet as the property sheet of a shape, in which
each property is set by a value or formula that is recalculated dynami-
cally as the user works with the shape.

Many features that you might expect to require external programming
can be controlled through the ShapeSheet window. For example, you
add menu items to a shape’s shortcut menu by defining formulas in
its ShapeSheet window. Formulas can control other attributes of a
shape, such as:

• Geometry (flipping, rotation, visible or hidden paths).

• Color, pattern, and line weight.

• Text, including font, paragraph formatting, and orientation.

• Control handles that help users adjust the shape.

• Connection points where other shapes can be glued.

• Custom properties that can contain user data.

The spreadsheet interface makes it easy to use cell references to link
one shape property to another, which means that shape properties
can influence each other in subtle and powerful ways. For example,
you might link the color of a shape such as a part in a mechanical
drawing to its dimensions, to indicate whether the part is within
tolerance.



I N T R O D U C T I O N 15

This arrow shape is a classic example of controlling a shape with
ShapeSheet formulas. Its formulas override the default behavior
given to shapes by Visio, which is to size proportionately when the
shape is stretched horizontally or vertically. When this arrow shape is
sized horizontally, its custom formulas allow the tail to stretch or
shrink horizontally but leave the arrowhead unchanged.

y

x

➋

➊

➌

➍

➎

➏

➐➑

Custom formulas in the ShapeSheet Geometry section

Geometry1 X Y

➊ Start = 0 = Height * 0.75

➋ LineTo = 0 = Height * 0.25

➌ LineTo = Width – Height*0.5 = Height * 0.25

➍ LineTo = Geometry1.X3 = 0

➎ LineTo = Width = Height * 0.5

➏ LineTo = Geometry1.X3 = Height

➐ LineTo = Geometry1.X3 = Height * 0.75

➑ LineTo = Geometry1.X1 = Geometry1.Y1

For a detailed discussion of this example, see “Controlling how
shapes stretch and shrink” in Chapter 3, “Controlling shape size and
position.”

All points on the base of the arrowhead
have the same x-coordinate:

Width – Height * 0.5.

The base of the arrowhead is defined
as a fraction of Height.

Height

Height * 0.75

Height * 0.5

Height * 0.25

Width



1 6 C  H  A  P  T  E  R    1

Shapes as components
Just as a procedure in a program encapsulates functionality so that it
is easier to use and reuse, Visio shapes encapsulate behavior on the
drawing page. Think of a Visio shape as a component whose default
behavior is provided by Visio, and whose unique behavior is provided
by the ShapeSheet formulas you write.

You provide shapes to users by giving them a standalone stencil that
contains your shapes as masters. Users (or your programs) can drag
and drop masters from the stencil into a Visio drawing. The stencil
makes your custom shapes easy to reuse—the same shapes can be
used by an engineer to simulate a product configuration, by a sales-
person to show customers what they’re buying, or by a graphic artist
to create a catalog of your product line.

Dropping a master into a drawing creates an instance of the master
and, the first time the master is dropped, adds a local copy of the
master to the drawing. Each instance inherits from the local master,
which means that the instance can support a lot of complex behavior
while remaining relatively small. Any formula can be overridden at
the instance level, but global changes can be propagated to instances
by altering the local master. And the drawing is portable because it
has local copies of masters—the stencil or stencils that originally pro-
vided the masters are no longer required. All that’s needed to view the
drawing is a copy of Visio.

Packaging shapes in a solution

• A template is a Visio file that is used to create new drawings.
A template can open the correct stencils, and establish the
correct scale, drawing size, and paper size for a drawing. It
can contain predrawn elements like title boxes, logos, and
frames. A template can also provide cells, values, and formu-
las that are added to the ShapeSheet window of each new
drawing page, and provide VBA macros that are copied to new
drawings. For details about creating templates, see “Creating
templates” in Chapter 2, “Tools for creating solutions.”

• Shapes and templates can be linked to topics in a standard
Microsoft Windows help file to guide the user toward correct
usage of your shapes. For details about creating Windows
help files, see the documentation provided with your develop-
ment environment. For details about linking Visio shapes and
templates to online help, see “Adding help to masters” in
Chapter 9, “Packaging stencils and templates.”

A stencil is like a catalog or gallery of components—your cus-
tom shapes—from which the user constructs a model. Design
the masters so that the user does not have to draw anything by
hand, if possible. For details about creating masters and stencils,
see Chapter 2, “Tools for creating solutions.”

In addition to a stencil, a Visio solution typically includes styles, a
template, and online help:

• Styles give shapes consistent text, line, and fill formats.
Shapes formatted with styles inherit their formatting from the
definition of the style in the drawing file, so you can reformat
drawings quickly and easily by redefining the style. For details
about defining styles, see Chapter 7, “Managing styles, for-
mats, and colors.”



I N T R O D U C T I O N 17

7' x 19' struc. rack

Galactica  hub

ONline 506-C

32-port patch panel

Lattis Sys. 5005N

NetServer LC

Dbl-sided shelf

These network equipment shapes are designed to align and connect
with the equipment rack shapes, so a network designer can create an
accurate model of a server room. Individual shapes match the manu-
facturer’s specifications for a precise fit, and the shape designer
customized the shapes’ alignment boxes and added connection points
to make the shapes easier to use.

For details about customizing how shapes connect and align, see
Chapter 5, “Making shapes connect: 1-D shapes and glue” and Chap-
ter 8, “Scaling, snapping, and aligning.”



1 8 C  H  A  P  T  E  R    1

Integrating data with shapes

The appearance of a shape in a drawing, however sophisticated, is
rarely the whole story. The real-world object that a shape represents
often has important data associated with it—part numbers, prices,
quantities ordered or in the warehouse; names, dates, addresses, tele-
phone numbers; manufacturers, suppliers, customers; dimensions,
materials, tensile strength. Having this kind of data in a drawing
makes it a powerful tool for analysis and communication.

You can associate data with a Visio shape by defining custom proper-
ties in its ShapeSheet window. You give each custom property a
unique name and optionally define other characteristics, such as data
type, format, and default value. You can insert data into custom prop-
erties in any of these ways:

••••• Add the data when you create the shape. For example, you might
fill in custom properties for resistance, voltage, and amperage in
masters that represent electronic components. When the user
drops one of the shapes in a drawing, the data accompanies the
shape.

••••• Collect the data from the user. Visio can prompt the user to fill
in custom properties of a master each time it is dropped in a
drawing, encouraging the user to enter the data you need. The
user can also display and edit a shape’s custom properties from
its shortcut menu.

••••• Transfer data from an external source. You can set custom proper-
ties to data from an external source, such as a spreadsheet or
database, by writing an intermediary program that uses Automa-
tion to direct the flow of data. For more about programming as
part of a solution, see “Automating Visio” later in this chapter.

Sometimes data stays behind the scenes, but often you’ll want to dis-
play data in the drawing or change the drawing as the data changes.
You can use a shape’s custom properties in any of these ways:

••••• Display data in a shape’s text. Insert a text field in the shape’s text
to display the result of a custom property’s formula. A text field
can display a value, the result of a formula, or any global value
that Visio provides, such as file summary information or the
current date and time.



I N T R O D U C T I O N 19

••••• Control the shape’s behavior. Because custom properties are
stored in ShapeSheet cells, they can play a role in other formu-
las—for example, a shape’s geometry can be linked to its custom
properties, allowing the shape to respond to user input.

••••• Extract the data from the drawing. Just as you can use Automation
to set custom properties from an external source, you can obtain
data from a shape’s custom properties and write it to an external
destination such as a spreadsheet or database.

Designing shapes for data

Custom properties can serve as containers for data from an ex-
ternal source, or they can provide a data-entry interface for
shapes in a drawing. Whether custom property data resides only
in the shape or comes from an external source is up to you.

The Database Wizard, provided with Visio 5.0, streamlines the
process of connecting your database with Visio shapes. For de-
tails about using the Database Wizard, see Using Visio Products.
For details about defining custom properties, see “Defining cus-
tom properties” in Chapter 4, “Enhancing shape behavior.”

Custom properties are only one example of how you might inte-
grate external data with Visio drawings and diagrams. For
example, a parts database might contain many records repre-
senting variations on a theme, such as different head styles,
thread lengths, and overall lengths of bolts. You might create a
single Visio shape with multiple geometries and the ability to dis-
play the correct configuration based on a record from the
database. For an example of defining a shape with multiple ge-
ometries, see “Defining shortcut menu commands” in Chapter 4,
“Enhancing shape behavior.”

This office floor plan illustrates
how a drawing can integrate
data from an external source.
Employee information is
obtained from an external
database and stored in the
custom properties of each
chair shape in the drawing.

Commands on the chair shape’s shortcut menu allow
the user to display its custom properties or get current
information from the database.

The user could modify employee information by
editing the chair shape’s custom properties and
updating the database from the drawing.



2 0 C  H  A  P  T  E  R    1

Automating Visio

Visio supports Automation (formerly OLE Automation), so you
can integrate the functionality of the Visio graphics engine and
SmartShapes technology with other programs, using a common and
familiar programming language. The Visio version 5.0 product
line integrates Visual Basic for Applications (VBA), so you don’t need
a separate development environment. And you can write VBA pro-
grams in Visio that control other applications. However, you can
control Visio from programs written in any Automation controller.
For details, see Chapter 10, “Automation and Visio.”

Your program controls Visio by accessing objects that represent the
items you want to control, then using their properties and methods to
manipulate the objects. Most objects in the Visio object model corre-
spond to items you can see and select in Visio. For example, a Shape
object represents a shape in a drawing.

Like the shapes you create, the kind of program you write depends on
the solution you’re developing. Programs that control Visio can:

••••• Generate drawings from external data. You might create drawings
based on user input or records in a database. For example, a
business process modeling solution might generate diagrams
from a repository of process information, using custom shapes
that follow a strict set of rules.

••••• Read drawings to extract information or validate the model.
You might read diagrams created with custom shapes to gather
information for a database, check accuracy, or create other kinds
of documents. For example, a solution that supports field sales
might analyze a diagram at a customer site to flag errors or
generate an order.

••••• Synchronize a drawing with the data it represents. A model is
most effective when you automate the connection between the
drawing and the data it represents. For example, a visual corpo-
rate directory might use data from an employee database to show
each employee in an office space plan, and update the database
with a new location when the employee is moved in the drawing.

You can achieve a high level of interactivity and control between your
program and Visio by handling events. For details, see Chapter 15,
“Handling events in Visio.” You can also add ActiveX controls directly
to Visio 5.0 drawings. For details, see Chapter 18, “Using ActiveX con-
trols in a Visio solution.”

Designing a program to control Visio

A program can help create a drawing, ana-
lyze a drawing, or transfer information
between a drawing and external data
sources. Or a program can simply enhance
the behavior of a particular shape. What-
ever your program does, design it to
manipulate masters and shapes in drawings
and provide data that changes dynamically
at runtime, rather than create shapes with
code and static data.

The chapters in Part III, “Extending Visio
with Automation,” discuss techniques for
writing programs that control Visio through
Automation in VBA, Visual Basic, and C++.



I N T R O D U C T I O N 21

The following code is from the program NetDB, which creates a
simple network diagram from a database table, using masters from
a stencil of network shapes. The Visio template that contains the pro-
gram is in \DVS\VBA SOLUTIONS.

Code that generates a Visio drawing

Set NetStencil = Visio.Documents("netdb.vss")

Set NetDiagram = ThisDocument.Pages(1)

While Not NetInfo.EOF

NodeType = NetInfo.Fields("Node")

Set Master = NetStencil.Masters(NodeType)

Set Shape = NetDiagram.Drop(Master, XPos, 0.875)

XPos = XPos + 1.5

Label = NetInfo.Fields("Name")

Label = Label & vbCrLf

Label = Label & NetInfo.Fields("Dept")

Shape.Text = Label

Shape.Data1 = NetInfo.Fields("Spec")

Set ControlCell = Ethernet.Cells("Controls.X" & Chr$(Digit))

Digit = Digit + 1

Set ConnectCell = Shape.Cells("Connections.X5")

ControlCell.GlueTo ConnectCell

NetInfo.MoveNext

Wend

Ethernet

AndyJ
Product  Development KeriD

Technical  Support
JohnF

Market ing
CindyM

Creat ive Serv ices
MitchS

Product  Development

For a detailed discussion of this program, see Chapter 12, “Creating
Visio drawings from a program.”





Topics in this chapter

Working with the ShapeSheet window........................................................ 24

Creating masters and stencils ...................................................................... 31

Creating templates ........................................................................................ 35

Opening and saving Visio documents ........................................................... 37

Programming Visio with VBA ........................................................................ 40

2
Tools for
creating solutions

Most often, a graphic solution starts with a roughed-out shape. As
you work with a shape, you think of better ways for it to address your
drawing task—perhaps by adding special formulas that control shape
behavior. If you want the shape to provide data to or read data from
an external program, you can write an Automation program using
Visual Basic for Applications (VBA). To make your shapes reusable,
you can save them as masters on a stencil, and then distribute your
solution as a self-contained template that includes VBA macros, cus-
tomized stencils, and unique drawing page settings. Through a process
of successive refinement, you can create a complete graphic solution.

Visio provides the tools you need to create your solution. This chap-
ter describes how to work in the ShapeSheet window; how to create
masters, stencils, and templates; how the Visio file format affects your
solution; and how to use the VBA editor.



2 4 C  H  A  P  T  E  R    2

Working with the ShapeSheet window

The shape you see on a drawing page is created according to a set of
instructions that appear as values and formulas in cells of the
ShapeSheet window. This window provides another view of a
shape—a view that gives you precise control over the appearance and
behavior of a shape. You can edit these cell values and write new for-
mulas to dynamically recalculate shape attributes.

Shapes, groups, masters, objects from other applications, pages,
guides, and guide points are represented by a ShapeSheet interface. In
groups, the group is represented by a ShapeSheet interface, as is each
object in the group. In this section, object refers to anything in Visio
that is represented by a ShapeSheet interface.

Parts of a ShapeSheet interface

To display the ShapeSheet interface for a shape, group, guide,
guide point, or object from another application:

1. Select the object.

To select a shape within a group, open the group window and
select the shape there. For details, search online help for
“groups: editing.”

2. From the Window menu, choose Show ShapeSheet. Or click the
Show ShapeSheet button on the Developer toolbar.

When the ShapeSheet window is active,
the menu bar contains commands for
working with an object’s ShapeSheet

interface.

You can edit the selected cell in the
formula bar.

Each section controls a particular
behavior of a shape.



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 25

TIP  To add the Show ShapeSheet command to shapes’ context (right-
click) menus, choose Options from the Tools menu, click the
Advanced tab, and check Run In Developer Mode. This option also
adds the Add-Ons submenu to the Tools menu.

To display the ShapeSheet interface for a page:

• Make sure nothing is selected, then from the Window menu,
choose Show ShapeSheet. Or click the Show ShapeSheet button
on the Developer toolbar.

To display the ShapeSheet interface for a master:

1. Open the stencil file containing the master you want.

Make sure Original or Copy is checked in the Open Stencil
dialog box.

2. In the Visio stencil window, double-click the master.

3. In the master drawing window, select the shape, then from the
Window menu, choose Show ShapeSheet. Or click the Show
ShapeSheet button on the Developer toolbar.

Displaying ShapeSheet sections
The ShapeSheet window is divided into sections of labeled cells that
define related aspects of object behavior and appearance. Only sec-
tions that are available for the selected object appear in the
ShapeSheet window. For example, every shape has a Shape Transform
section, which contains general positioning information for the
shape, but a page sheet does not include or need this section. To save
space, Visio does not display all the sections available for an object.
When you want to work with cells in a section that is not visible, you
can show that section if it is available for the selected object.

You can expand and collapse sections in the ShapeSheet window by
clicking the section name.

To show or hide sections:

1. Click the title bar of the stencil window, then choose Sections
from the View menu.

2. In the Sections dialog box, check the sections you want to show,
or uncheck the sections you want to hide, and then click OK.

If a section is dimmed, it is not available for the selected shape.

Using the Developer toolbar

The Developer toolbar buttons are shortcuts
for various Visio menu commands.

To display the Developer toolbar, choose
Toolbars from the View menu, then choose
Developer.

The Run Macro, Visual Basic Editor, and
Show ShapeSheet buttons are described in
this chapter. For details about the Insert
Control and Design Mode buttons, see
Chapter 18, “Using ActiveX controls in a
Visio solution.”

Run Macro

Visual Basic Editor

Insert Control

Show ShapeSheet

Design Mode



2 6 C  H  A  P  T  E  R    2

Some ShapeSheet sections appear only after you explicitly add them.
For example, to create a command that appears on a shape’s shortcut
menu, you can add the Actions section.

To add a new section in the ShapeSheet window:

1. From the Insert menu, choose Section.

2. In the Insert Section dialog box, check the sections you want to
add, and then click OK.

For details about each ShapeSheet section and the cells it contains,
search online help for “shapesheets: sections.”

Entering and editing formulas
The key to controlling shape actions is to write formulas that define
the behavior you want. A formula is the expression in a cell that can
contain constants, cell references, functions, and operators, and that
evaluates to a value. In the ShapeSheet window, you can display cell
contents as either values or formulas by choosing the appropriate
command on the View menu.

You can edit a cell’s formula to change how the value of the cell is cal-
culated and, as a result, change a particular shape’s behavior. For
example, the Height cell in the Shape Transform section contains a
formula that you can edit to change the shape’s height. You enter and
edit formulas in the ShapeSheet window much the same way you
work in any spreadsheet program, with two key differences:

• Visio regards anything in a cell—even a numeric constant, string,
or cell reference—as a formula.

• Many cells assume that a value is dimensional, so anything you
enter in them implies a unit of measure. (For details, see the
following section.)

To enter a formula, you select a cell and then start typing in the for-
mula bar, as the following figure shows.

Entering a formula in the formula bar

Select a cell, then type or edit the
formula in the formula bar and press

Enter…
…or click the Cancel button to cancel

changes to a formula.



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 27

For details about entering and editing formulas or working in the for-
mula bar, search online help for “formulas” or “formula bar.”

TIP  Right-click a ShapeSheet cell to display its shortcut menu, which
contains commands you can use to edit the cell.

Referencing another cell in a formula
You can create interdependencies among ShapeSheet formulas by
means of a cell reference. You can refer to a ShapeSheet cell of either
the current shape or another shape on the same page. Cell references
give you the power to calculate a value for one cell based on another
cell’s value.

A reference to a cell in the same shape specifies only the cell name,
such as Height. For a cell in a section with indexed rows, the section
and row index are part of the cell name. For example:

Connections.X5

which specifies the cell in column X, row 5, of the Connections sec-
tion. A reference to a cell in another shape requires an object name or
ID (identifier) followed by an exclamation point and cell name. For
example:

Sheet.2!Width

An exception is when you apply a style, which always writes new
values into the corresponding ShapeSheet cells and so can over-
write even locally edited cells. For details, see Chapter 7,
“Managing styles, formats, and colors.”

Black text in a cell indicates an inherited formula. Blue text indi-
cates a local formula—either the result of editing the formula in
the ShapeSheet window or some change to the shape that
caused Visio to reset the formula for that cell. To replace a local
formula with an inherited formula, delete the local formula from
the cell. Visio restores the inherited formula from the master.

How shapes inherit formulas

When you open the ShapeSheet window, the formula you see in a
cell can be one that is inherited from a master or a style (called an
inherited formula), or one that you entered in the cell (called a
local formula). Rather than make a local copy of every formula for
a shape, an instance inherits formulas from its master on the local
stencil and from the styles applied to it.

This behavior results in smaller files, but also allows changes to
the master’s formulas or the style definition to be propagated to
all instances. When you write a local formula in the sheet of an
instance, you are replacing the inherited formula in the
cell, which then no longer inherits its value from the master.



2 8 C  H  A  P  T  E  R    2

A shape, group, guide, or guide point always has an ID, whether or
not it has a name. Visio assigns the ID when the object is created. This
ID does not change unless you move the object to a different page or
document. To display the ID or enter a name, choose Special from the
Format menu.

A reference to a cell in the page sheet, the ShapeSheet interface for the
drawing page, requires the name ThePage followed by an exclamation
point and the cell name. For example:

ThePage!PageScale

In a master, a reference to ThePage refers to the page of the master
drawing window.

The following table summarizes rules for cell references in formulas.

Example cell references

Sheet Cell Reference Example

Same shape Cellname Width

Named shape, group, or guide Shapename!Cellname Star!Angle

Named group or guide in which more Shapename.ID!Cellname Executive.2!Height

than one shape at the same level has

the same name

Any shape on the page Sheet.ID!Cellname Sheet.8!FillForegnd

A cell in a named column with Sectionname.Columnname[Index] Char.Font[3]

indexed rows

A cell in an unnamed column with Sectionname.ColumnIndex Scratch.A5

indexed rows

A cell in the page sheet ThePage!Cellreference ThePage!User.Vanishing_Point

Cell reference shortcut

To quickly refer to another cell in the same
shape, place the insertion point in the for-
mula bar, then click the cell you want. Visio
inserts the cell name at the insertion point.



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 29

How units are expressed in a formula
Visio evaluates the result of a formula differently depending on the
cell you enter it in. In general, cells that represent shape position, a di-
mension, or an angle require a number-unit pair that consists of a
number and the qualifying units needed to interpret the number. For
example, a formula in the Width cell that evaluates to 5 means 5 units
of measure, such as inches or centimeters. Many other cells are
unitless and evaluate to a string, to true or false, or to an index. For
example, the formula =5 in the FillForegnd cell means color 5 from
the drawing’s color palette, and in the LockWidth cell means TRUE

(and locks the shape’s width).

Always specify a unit of measure when you enter a formula in a cell
that expects a dimensional value. Doing so makes it easier to identify
the number-unit pairs in your calculations, so that you don’t inad-
vertently divide one number-unit pair with another number-unit
pair, or combine incompatible units, such as adding angles to lengths.
In addition, specifying units of measure makes it easier to localize
your formulas for international use, if that’s a consideration.

If you don’t specify units of measure, Visio evaluates a number using
the default units defined for the cell, which can be page units, draw-
ing units, or angular units. Page units measure sizes on the printed
page, including typographic measurements. Drawing units specify the
real-world measurement, such as a 50-meter pool (drawing units)
that appears 10 cm long (page units) on paper. For example, if you
enter the formula =50 into the Width cell, which expects a number-
unit pair in drawing units, Visio supplies the default drawing units
currently set for the page and evaluates the formula accordingly.

Example calculations using number-unit pairs

Do Don’t

5 in. 5

Width + 0.5 in. Width + 0.5

7 in. * 1.5 7 * 1.5

DEG(MODULUS(Angle, 360 deg.)) MODULUS(Angle, 360 deg.)

Specifying units of measure

Because many drawings represent physical
objects, Visio accepts units of measure in
the English and metric systems, and you can
specify angles in either radians, decimal
degrees, or degrees, minutes, and seconds.
You can also use standard typographical
measurements such as picas, points,
ciceros, and didots.



3 0 C  H  A  P  T  E  R    2

ShapeSheet sections for writing formulas
Most ShapeSheet sections have a predefined purpose: Their cells con-
tain shape attributes or behaviors. To write a formula that serves as an
intermediate calculation or that stores values used by another for-
mula or add-on, use the cells in the User-Defined Cells section or the
Scratch section. These two sections contain cells that do not corre-
spond to specific shape attributes or behaviors, so you can use either
or both to contain any formula. These sections do not appear in the
ShapeSheet window unless you add them by using the Section com-
mand on the Insert menu.

You can add a cell whose value and name you specify in the
User-Defined Cells section. A user-defined cell can contain any for-
mula, such as a constant referenced in other formulas or a calculation
used by an add-on. For example, a master can refer to a user-defined
cell in a page. When an instance of the master is created, the instance
refers to the user-defined cell of the page it is on.

The name you give to a user-defined cell must be unique within a sec-
tion. To refer to the value of a user-defined cell in the same shape, use
the syntax User.name. For example, to refer to a user-defined cell
Constant of the shape with the ID Sheet.2, use this expression:

Sheet.2!User.Constant

NOTE  The User.Prompt cell, Action.Prompt cell, and certain other
cells are designated by default to contain a string. When you type in
these cells, Visio automatically encloses the text in quotation marks.
If you start the formula with an equal sign (=), though, Visio treats
the entry as it treats any other formula (and doesn’t add quotation
marks).

The Scratch section is displayed with six columns labeled X, Y, and A
through D. Place calculations involving dimensions or shape coordi-
nates in the X and Y cells of the Scratch section, which use the
drawing’s units of measure. The A through D cells are unitless, and so
are appropriate to use for logical and string expressions. To refer to
cells in the Scratch section, specify the section name and the column
and row label; for example, Scratch.A1.

User-defined and Scratch cells

You can use either a user-defined or a
Scratch cell for assorted calculations, but
there are times when it makes more sense
to use one or the other.

For example, the Scratch section has X and
Y cells, which are designated to contain a
number-unit pair in drawing units. These
cells are good places to put formulas involv-
ing shape coordinates.

Because you can provide a meaningful
name for a user-defined cell, it’s a better
place to store constants and values referred
to in other formulas. References to a mean-
ingful cell name make formulas easier to
read.

When you need to exchange information
between an object and an external pro-
gram, it may be safer to use a user-defined
cell. Any program can write to a Scratch
cell and so overwrite formulas you place
there. This is less likely to happen in a cell
with a unique name.



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 31

Creating masters and stencils

Your solution probably involves several customized shapes, which
you can distribute as reusable masters (or master shapes) on a stencil.
A master is a shape, group, or object from another application that is
saved on a stencil, which can be opened in other drawings. You can
create a shape on the drawing page, then drag it into a stencil to cre-
ate a new master. Or you can use commands available in the stencil
window to create a new master. These commands are available only
when you open a stencil as an original file with write access.

To reuse the masters you create, you save them on a standalone sten-
cil, which is a file with the extension .VSS. You can save any Visio file
as a standalone stencil. By default, Visio opens a standalone stencil as
read-only. When you want to work with a stencil or the masters it
contains, you must open the original file or a copy of it. Unless other-
wise specified, when we talk about stencils in this book, we are
referring to standalone stencils.

When a user drags a master from a stencil onto a drawing page, Visio
creates a copy of that master on the local stencil of the drawing and
creates an instance of the master on the drawing page. A drawing file
always includes a local stencil that contains copies of the masters used
in the drawing, even if the corresponding shapes are later deleted
from the drawing page. An instance is linked to the copy of its master
on the local stencil and inherits its behavior and appearance from
that master.

Stencils in a Visio drawing file

To display the local stencil for a drawing
page, choose Show Master Shapes from

the Window menu.

Typically, when you open a template, its
standalone stencil is opened as a read-

only file in a docked window.



3 2 C  H  A  P  T  E  R    2

Opening a stencil
One way to create a stencil is to open a new, empty file as a stencil. Be-
cause the new file’s drawing page is empty, you can more easily keep
file size to a minimum, and the file contains only the default styles
until you add masters to the stencil.

To open a new, empty stencil:

• From the File menu, choose Stencils, then choose Blank Stencil.

Visio opens a new stencil file with write access.

You can open the original version of an existing stencil so that you
can add new masters to it or edit the ones already there, and then save
the revised stencil as a new file.

To open a stencil as an original file with write access:

1. From the File menu, choose Stencils, then choose Open Stencil.

The Open Stencil dialog box appears.

2. Select the stencil file you want to revise.

3. Under Open, select Original, then click Open.

Visio opens the stencil as an original file with write access.

You can quickly create a new stencil with the masters already in it by
saving the local stencil of a drawing file as a .VSS file. The stencil you
create this way will contain all the masters used during the drawing
session, including masters whose instances you have since deleted
from the drawing page. You may want to edit the local stencil and
clean up the drawing page before saving it as a new stencil file.

To create a new stencil from a drawing’s local stencil:

1. If you want to view the masters before saving them, from the
Window menu, choose Show Master Shapes.

2. From the File menu, choose Save As.

3. Under Save As Type, choose Stencil (*.VSS). Enter a name and
location for the file, then click Save.

Copyright information

The stencils, masters, templates, and
source code provided with Visio products
are copyrighted material, owned by Visio
Corporation and protected by United States
copyright laws and international treaty
provisions. You cannot distribute any copy-
righted master provided with any Visio
product, unless your user already has a
licensed copy of a Visio product that in-
cludes that master. This includes shapes
you create by modifying or deriving shapes
from copyrighted masters.

To copyright your own shapes, use the
Special command on the Format menu.



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 33

Saving shapes as masters on a stencil
Just as you can drag a master into a drawing to create a shape, you can
drag a shape or group into a stencil to create a master. The stencil
must be opened as an original file. You can create a master from an
object that you have pasted or imported into Visio from another pro-
gram. However, when users create an instance of such a master, they
won’t be able to edit the shape’s vertices, rotate it, or add text to it.

To create a master from a shape in a drawing:

1. In the drawing window, display the page that contains the shape
you want to use as a master.

2. Make sure the drawing window is active, then drag the shape
from the drawing window into the stencil window. Or hold down
the Ctrl key to drag a copy of the shape.

Visio creates a default name and icon for the shape in the stencil
window.

3. To realign icons after adding a master, choose Arrange Icons from
the View menu.

4. To save your changes to the stencil file, make sure the stencil
window is active, and then choose Save from the File menu.

If you are creating a new stencil, type a new name for the stencil.
Under File Type, select Stencil. To protect the stencil from
accidental changes the next time it is opened, under Save, select
Read Only. Click OK.

Masters in local and standalone stencils

A local stencil is the stencil associated with a template’s draw-
ing page. A standalone stencil is a document with the .VSS file
extension. When you drag a master from a standalone stencil
onto the drawing page, Visio copies the master to the local sten-
cil, then creates an instance of the master on the drawing page.
In this fashion, the local stencil receives copies of all masters
used during drawing sessions. An instance of a shape inherits its
styles from the master on the local stencil. As a result, each Visio
document can be moved easily from machine to machine.

When you drag an instance of a master onto the drawing page,
Visio decides whether to copy the master to the local stencil. If
the Match Master By Name On Drop option is checked in the

master’s Properties dialog box, then Visio links the instance to
the master on the local stencil with the same name. Otherwise,
Visio uses the master’s time stamp to determine if the master
needs to be copied.

Each master on a standalone or local stencil is internally
stamped with the date and time it was last updated. When you
edit the copy of a master on the local stencil, its time stamp no
longer matches that of the master on the standalone stencil.
When you next drag an instance of the original master from the
standalone stencil, Visio makes a new copy of the master on the
local stencil and gives it a unique name. The new instance is
linked to the new master on the local stencil.



3 4 C  H  A  P  T  E  R    2

Working with masters on a stencil
You can add new, blank masters to a stencil or edit the existing mas-
ters. When you open a stencil with write access, you can edit masters
by opening the master drawing window as the following figure shows.
To specify the attributes of master shapes and icons, you can use com-
mands on the Master menu, which Visio displays in the menu bar
when an original stencil is active.

The master drawing window displays the drawing page for a master.

To create a new, blank master:

1. Make sure the stencil window is active, then choose New Master
from the Master menu.

2. In the New Master dialog box, under Master Name, type a name
for the master, then click OK.

Visio creates a blank master and adds an icon to the bottom of
the stencil. Edit the master and its icon using the commands on
the Master menu or on the master’s shortcut menu.

For details about other options in the New Master dialog box,
click the Help button in the dialog box.

You can add a new, blank master to a stencil,
then edit the master and its icon.

You can draw and edit on the master’s
drawing page using the same techniques
you use on the document’s drawing page.



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 35

To edit a master:

1. In the stencil window, double-click the master you want to edit.

The master drawing window appears, which contains the drawing
page associated with the master.

2. When you are finished editing the master, close the master
drawing window.

Visio asks if you want to update the master. Click Yes. Visio also
updates the master icon to reflect the changes you have made,
unless the Manual option is checked in the master’s Properties
dialog box. For details about refining master icons, see “Finishing
and testing a stencil” in Chapter 9, “Packaging stencils and
templates.”

Creating templates

To work more efficiently in Visio, you can save the page settings,
styles, shapes, macros, and stencils you use most as a template. With a
template, you can put everything in one place, which makes it simple
to deliver your custom solution to users. In general, to create a tem-
plate, you open a new or existing drawing file, set the options you
want, open the stencils you want, and then save the file as a template.
The drawing page of a Visio template file is typically blank, but your
template can include shapes on the drawing page, such as a title block
or a company logo, or even more than one drawing page.

You can save any Visio file as a template, which can include:

• A workspace list identifying one or more stencils, which are
opened when you open a new drawing file with the template.

• One or more drawing pages, including backgrounds. Each page
can contain a drawing and can use a different size and scale.

• VBA macros.

• Print settings.

• Styles for lines, text, and fill.

• Snap, glue, and layering options.

• A color palette.

• Window sizes and positions.



3 6 C  H  A  P  T  E  R    2

c:\visio\stencils\sten1.vss

Workspace List

Stencil Drawing1:Page-1

Styles Colors

Styles Colors

Typically, when you open a file as a template (.VST), you open at least two
documents, a stencil file and a drawing file, which contain the elements shown.

To create a template:

1. Open the drawing file on which you want to base the template.
Or open a new drawing file.

2. Open the stencil file (or files) that you want to open with the
template.

Open each stencil file as read-only. If you open the stencil file as
an original, it will be saved that way in the template’s workspace
list.

3. Activate the drawing window, and then change or define options
and settings that you want to include in the template.

For example, you can define the styles you want to include, set
page display options, and select a drawing scale.

4. If you want a drawing page to contain any standard elements,
create the appearance you want. You can insert additional pages
as either foreground or background pages.

5. From the File menu, choose Properties. In the Properties dialog
box, type information about the template, then click OK.

The text you type under Description appears when you select the
template in the Open and Choose A Drawing Template dialog
boxes.

6. From the File menu, choose Save As.

Under Save, check Workspace. From the File Type list, select
Template (*.VST). In the File Name box, type a name for the
template, and then click OK.

Workspace or workspace list?

Visio saves the workspace list with a file if
the Workspace option is checked in the
Save As dialog box. A workspace list differs
from a workspace (.VSW) file, which Visio
creates when you use the Save Workspace
command on the File menu.

One or more standalone stencils,
if specified in the template’s workspace list

The drawing, which can
have more than one page,
and includes its own style
definitions, color palette,
and local stencil

Style definitions and colors used in
the stencil file, which should match

those of the drawing

The template’s workspace list, which
specifies all the files and windows to open



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 37

Visio typically opens a template’s stencils in docked, read-only win-
dows. However, a template can open some stencil files docked and
others floating, some as read-only and others as original. A template’s
workspace list stores the names of the stencil files to open as well as
the type, size, and position of window to display them in based on
their appearance when you saved the template.

NOTE  If you are creating a template for scaled drawings, the page
scale is set by the template’s drawing page. The master scale is deter-
mined by the scale at which the shape is drawn. To avoid unexpected
behavior, masters and drawing pages should use the same or a similar
scale. For details, see Chapter 8, “Scaling, snapping, and aligning.”

Opening and saving Visio documents

When you work in Visio, the document you open, how you open it,
and how you save any changes you make depends on the file type. A
Visio document can be a drawing (.VSD), stencil (.VSS), template
(.VST), or workspace (.VSW). In fact, all of these file types have the
same format. Visio uses the file extension to determine what to dis-
play onscreen when the document is opened. This means, for
example, that you can save a drawing file (.VSD) as a template (.VST),
which you can then open and work with as a template.

Local Stencil

Page

0

1

2

3

Colors

…

Text Only

Normal

No Style

None

Styles

…

c:\visio\*.vss

c:\visio\*.vsd

Workspace List

Elements of a Visio document

Visio uses the file extension to determine
whether to display all file elements.



3 8 C  H  A  P  T  E  R    2

Each Visio document always has:

• At least one drawing page.

• A local stencil that contains copies of any masters used on the
drawing page (or, in the case of a .VSS file, that displays the
masters).

• A workspace list, which identifies all of the windows and files that
are opened with the current file.

• A list of styles defined for the file, including at least the four
default Visio styles (No Style, None, Normal, and Text Only).

• A color palette of 24 user-modifiable color slots and up to 232
additional colors defined by RGB (red, green, blue) or HSL (hue,
saturation, luminosity) formulas in the document.

A document can also contain shapes on the drawing page, with styles
and colors applied from those stored in the document, as well as VBA
projects with modules, class modules, and user forms.

Opening a Visio file
You can open a Visio file as an original document with read/write ac-
cess, as an original document with read-only access, or as a copy of
the original document. When you choose Open from the File menu,
these options appear in the Open dialog box. For example, when you
open a stencil file with read/write access, Visio displays the Master
menu with commands for editing masters and icons.

In addition, Visio uses the file extension to determine which windows
in a document should be active. For example, when you open a sten-
cil file, its drawing window is closed and only its local stencil is
displayed. When you open a drawing file, its stencil window is closed
and only the drawing page is displayed. You can display the windows
that are closed by default for a Visio file:

• To display the drawing window for a stencil file, choose Show
Drawing Page from the Window menu.

• To display the local stencil for a file, choose Show Master Shapes
from the Window menu.



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 39

The following table shows how items appear by default for each file
extension when opened.

How Visio opens a file

File Default contents

.VSD Drawing. Opens all windows and files listed in the workspace, if it

was saved with the file. If not, Visio creates a drawing window and

displays the page that was open the last time the file was saved.

.VSS Stencil. Opens the stencil as read-only (in a docked window, if a

drawing window is active). If a drawing window is not active, Visio

creates a stencil window and displays the file’s stencil.

.VST Template. Opens an untitled copy of the drawing in a drawing

window, and opens all windows and files listed in the workspace. If

there is no workspace, Visio creates a drawing window and displays

a new empty drawing.

.VSW Workspace. Opens in the appropriate windows all files listed in the

workspace, then closes the .VSW file.

Saving your work
You can take advantage of the different Visio file types to work more
efficiently. Here are some tips for saving your work:

• You can save a file’s local stencil as a .VSS file to quickly create a
new standalone stencil of frequently used shapes.

• If you have two or more .VSD files open at once, you can save the
arrangement of all the open windows by using the Save
Workspace command on the File menu. That way, you can open
the .VSW file to open all the drawing windows in the positions
you last left them. (Checking Workspace in the Save As dialog box
saves only descriptions of the open windows in the workspace list
of the file being saved.)

• If you’re saving stencil and template files that are meant to work
together, make sure that their drawing page settings, styles, and
colors are compatible. For details, see “Using styles in stencils and
templates” in Chapter 7, “Managing styles, formats, and colors.”



4 0 C  H  A  P  T  E  R    2

• If you’re working on a document that you want others to review
but not change, save the file as read-only. To do this, check Read-
Only in the Save As dialog box.

Users can open and edit a copy of a read-only file, but the
original file cannot be edited. After you have saved a file as read-
only, to make the file read/write again, use the Save As command
to save the file to another name.

The Visio online help contains procedures for saving different types
of files and workspaces. For details, search online help for “saving.”

Programming Visio with VBA

Previous sections of this chapter have described development tools
available in Visio. This section discusses a VBA program that controls
Visio by accessing the objects that Visio exposes. Then, your program
manipulates the objects by getting and setting their properties, such
as shape text or fill; invoking methods on the objects, such as adding
or deleting shapes; and triggering code when an event occurs, such as
when a document is created or a page is deleted.

To build your VBA program, you can add modules, class modules,
and user forms to the default project contained in every Visio file. A
Visio file can store only one project, but that project can consist of
any number of modules, class modules, and user forms. A project is a
collection of items to which you add code. A module is a set of decla-
rations followed by procedures—a list of instructions that your
program performs. A class module is a special type of module used to
create an object definition that contains the object’s properties and
methods. A class module acts as a template from which an instance of
an object is created at runtime. A user form is a container for user in-
terface controls, such as command buttons and text boxes.

The following illustration shows how procedures are contained in
modules that are collected in a project, and how a project is stored in
a Visio file.

Other development environments

In addition to using VBA, you can write pro-
grams that control Visio in any development
environment that supports Automation,
such as Visual Basic and C/C++. If you use
Visual Basic or C/C++, you can write a
standalone executable program or, with C/
C++, a Visio library (.VSL), which is a Visio-
specific Windows dynamic-link library.

For details about controlling Visio from a
Visual Basic program, see Chapter 19,
“Programming Visio with Visual Basic.”

For details about controlling Visio from a
C++ program, see Chapter 20, “Program-
ming Visio with C++.”



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 41

Visio drawing: example.vsd

Drawing

Module1 UserForm1 ThisDocument

Module1

Sub Name (no arguments)
Visual Basic code

End Sub

Function Name (argument list)
Visual Basic code
Name=Return value

End Function

First Sub Procedure
in the module (macro)

First Function Procedure
in the module

(user-defined function)

Project

Stencil

An example of how a Visio drawing may look after adding items to the default
project and saving the drawing

How you combine modules, class modules, and user forms depends
on the type of solution you are providing. At a minimum, each
project contains a ThisDocument class module by default. The
ThisDocument class module represents the properties, methods, and
events of the specific document associated with a VBA project. The
ThisDocument class module is a custom object you can reference in
other VBA programs. For details about ThisDocument, see Chapter
11, “Using Visio objects.”

Simple projects may consist of just one user form or module. More
complex projects may consist of multiple modules, class modules,
and user forms. For example, to build a user interface for your pro-
gram, you must design a dialog box, data-entry form, or wizard
screen to tell the user what to do, and you must gather any informa-
tion the program needs to run. You must then decide how the user
will interact with your program. For example, users can choose your
program from the Macros dialog box, or your program can trigger
code in response to a document event, such as opening a document.

To build a VBA program, first insert a module, class module, or user
form. Then insert a procedure or enter code for an existing event pro-
cedure in the item’s code window, where you can write, display, and
edit code. You can open as many code windows as you have modules,
class modules, and user forms, so you can easily view the code and
copy and paste between code windows.

Automation and VBA in this book

The chapters that explain how to use Auto-
mation and VBA to control Visio assume you
are familiar with Visual Basic programming
and terminology. They offer only brief defini-
tions of important VBA terminology when
necessary. For details about programming
with Visual Basic and VBA terminology,
see the Microsoft Visual Basic online help
reference.



4 2 C  H  A  P  T  E  R    2

Getting started with VBA
To begin programming with VBA in Visio, you start the Visual Basic
Editor. You can start the Visual Basic Editor without opening a Visio
file, but you cannot open a document’s project without opening the
document first. To view a stencil’s project, make sure you open the
stencil as an original or copy.

To start the Visual Basic Editor:

1. Start Visio, then open a template, stencil, or drawing.

2. From the Tools menu, choose Macro, then choose Visual Basic
Editor. Or click the Visual Basic Editor button on the Developer
toolbar.

Visual Basic Editor: the VBA development environment

The menu bar displays the
commands you use to build, run,
and debug your program.

The programming workspace
displays all open modules,

class modules, and user forms
during design time. You build

your program in this area.

The toolbar provides quick access to
commonly used commands in the
development environment.

The properties window
displays a list of the properties

for the selected item.

The Project Explorer displays
a list of projects and project

items in Visio documents.



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 43

To navigate among projects in the Visual Basic Editor, use the Project
Explorer. It displays a list of the modules, class modules, and user
forms for the projects in all Visio files open with read/write access.

The Project Explorer displaying three Visio files open in an instance of Visio

You can customize a VBA project name, enter a project description,
or lock a project by choosing <Project Name> Properties from the
Tools menu and setting project properties. To save a Visio file and its
VBA project, choose Save <File Name> from the File menu. After you
save the file, the file name and location are displayed in the Project
Explorer in parentheses after the project name.

Inserting modules and class modules
Many VBA programs contain one or more modules—a set of declara-
tions followed by procedures. All Visio VBA projects contain the class
module, ThisDocument, which is a custom Visio object that repre-
sents the specific document associated with a VBA project.

Modules and class modules can contain more than one type of proce-
dure: sub, function, or property. You can choose the procedure type
and its scope when you insert a procedure. Inserting a procedure is
like creating a code template into which you enter code.

Scope is the area in which a procedure is accessible by other modules
and programs. Every procedure has scope. A procedure with a private
scope is limited to the module that contains it—only a procedure
within the same module can call a private procedure, and a private
procedure does not appear on any menus or in any dialog boxes.

Toggling between windows

To return to the Visio window from the
Visual Basic Editor, choose Visio from the
View menu. Or click the View Visio button
on the Standard toolbar.

To return to the Visual Basic Editor, choose
Macro from the Tools menu, then choose
Visual Basic Editor.

The Basic Shapes stencil and the items in its
project; open with read/write access.

An open Visio drawing and the items in its
project; this drawing hasn’t been saved.

An open Visio drawing, saved as Office
Plan, and the items in its project.



4 4 C  H  A  P  T  E  R    2

Other programs and modules can access a public procedure. Visio
displays public procedures that take no arguments on the Macro
menu.

You can also declare the variables in your procedure as local or global.
Global variables exist for the lifetime of your entire program, and
local variables exist only while the procedure in which they are de-
clared is running. The next time the procedure is executed, all local
variables are reinitialized. However, you can preserve the value of all
local variables in a procedure for the lifetime of your program by
making them static (fixing their value).

To insert and begin programming in a module or class module:

1. From the Insert menu, choose Module or Class Module.

2. From the Insert menu, choose Procedure.

The Add Procedure dialog box

3. In the Name box, name the procedure.

The name of a macro is displayed under its module’s cascading
menu in the Visio Macro menu. A procedure name cannot
include spaces or reserved words that VBA uses as part of its
programming language such as MsgBox, If, or Loop.

4. Under Type, select the type of procedure: Sub, Function, or
Property.

5. Under Scope, select Public or Private.

6. To declare all local variables as static, check All Local Variables As
Statics.

To write a macro or procedure that takes no
arguments, insert a Sub procedure.

To write a function that takes arguments and
returns a value after running the procedure,

insert a Function procedure.

To add properties to a class module,
insert a Property procedure.

Displaying macros on Visio menus

Visio displays the name of a module on the
Macro menu and the names of the macros it
contains on the module’s cascading menu.
You can choose instead to display your
macros prominently on the Macro menu so
your users can find them more easily.

To display macro names on the Macro
menu instead of the module’s cascading
menu, name the module that contains the
macros ShowInMenu. A module named
ShowInMenu does not appear on the
Macro menu, but its public macros do.

For an illustration that shows the Visio Mac-
ro menu, see ”Running a VBA program,“
later in this chapter.



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 45

7. Click OK.

VBA inserts a procedure template into the item’s code window
into which you can enter code. The template contains the first
and last lines of code for the type of procedure you insert.

8. Enter code into the procedure template.

For details about procedures, see the Microsoft Visual Basic online
help reference.

Inserting user forms
If you want your program to prompt the user for information, you
must build a user interface for your program by inserting user forms.
A user form is a container for user interface controls such as com-
mand buttons and text boxes. A control is a Visual Basic object you
place on a user form that has its own properties, methods, and events.
You use controls to receive user input, display output, and trigger
event procedures.

To insert and begin programming in a user form:

1. From the Insert menu, choose UserForm.

VBA inserts a user form into your project and opens the Controls
Toolbox.

2. Select the controls that you want to add to the user form from the
Controls Toolbox.

For details about adding controls, such as command buttons and
text boxes, see the Microsoft Visual Basic online help reference.

 

Toolbox and user form containing controls

Controls Toolbox
Command

button control

User form

Text box
control



4 6 C  H  A  P  T  E  R    2

3. Add code to the user form or controls.

To display the code window for a user form or control, double-
click the user form or control. Then you can choose the event
that you want your code to trigger from the drop-down list of
events and procedures in the code window and start typing your
code. Or insert a procedure and start typing your code in the
procedure template.

Using the Visio type library
To increase the speed of your programs and make writing your pro-
grams easier, use a type library. The Visio type library is a file that
contains Automation descriptions of the objects, properties, meth-
ods, events, and constants that Visio exposes.

Using the Visio object types declared in the Visio type library in-
creases the speed of your program because VBA interprets Visio
objects at design time rather than runtime. When you compile a pro-
gram during design time, VBA checks for syntax and programming
errors and matches object types against type libraries. If you use a
general variable type, such as Object, VBA doesn’t interpret it until
runtime when it queries Visio about object references. This extra
querying step decreases the speed of your program.

You can take advantage of the Visio type library to write code more
effectively by:

••••• Using Visio object types instead of general variable types.

••••• Viewing Visio Automation descriptions for objects, properties,
methods, events, and constants in the Object Browser.

••••• Copying code templates from the Object Browser.

Using Visio object types.  Earlier versions of Visio didn’t include a Vi-
sio type library; you defined an object variable as an Object and used
it to hold a reference to a Visio object. For example:

Dim pagObj as Object

Setting a reference to a type library

To use a type library, your project must ref-
erence it. Visio VBA projects automatically
reference the Visio type library, but when
using an external development environ-
ment, such as Visual Basic, you need to set
a reference to the Visio type library. For de-
tails, see Chapter 19, “Programming Visio
with Visual Basic.”



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 47

By using Visio object types declared in the Visio type library, you can
declare variables as specific types, such as Visio.Page:

Dim pagObj as Visio.Page

Using a Visio object type such as Visio.Page enables your program to
check the type of object it is referencing in the Visio type library at
design time. In this example, you’ve used Visio to inform your pro-
gram that you are referencing Visio object types in the Visio type
library, and you’ve used Page to inform it that the pagObj variable is a
Page object. You can more specifically define any Visio object with the
Visio type library. For details about using Visio objects, see Chapter
11, “Using Visio objects.”

Here are a few common Visio object types:

Dim docsObj as Visio.Documents 'a Documents

'collection

Dim docObj as Visio.Document 'a Document object

Dim shpsObj as Visio.Shapes 'a Shapes collection

Dim shpObj as Visio.Shape 'a Shape object

Dim mastObj as Visio.Master 'a Master object

To see a list of Visio object types, browse the pop-up box that appears
after you enter a period after an object or library type. It lists available
object types, properties, and methods specifically for the preceding
object or variable type. You can use this pop-up box to quickly
choose a Visio object type. To do this, scroll through the list until you
find the appropriate entry and double-click the entry to enter it in
your code.

The pop-up box in the following example lists some Visio object
types. In this example, the appropriate object type is Page.

Dim pagObj as Visio.

VBA code examples

The VBA code examples in this book and the
samples on your Visio 5.0 CD use Visio ob-
ject types.



4 8 C  H  A  P  T  E  R    2

Viewing Automation descriptions. You can view the Visio Automation
descriptions and copy code templates using the Object Browser. The
Object Browser displays constants, classes (objects), and class mem-
bers (properties, methods, and events) of type libraries referenced by
a project.

To display the Object Browser, choose Object Browser from the View
menu. To browse or search the Visio objects, properties, methods,
events, and constants, type the name of the object, property, method,
event, or constant you want to search for in the Search text box or just
click any member in the Members Of list.

NOTE  To view the class and members of the Visio type library only,
choose Visio from the Project/Library box.

The Object Browser

Members Of
list: lists the
properties,
methods,
events, and
constants for
the selected
class

Project/Library box

Classes list: lists the
available classes and

objects

Search text box

Details pane



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 49

Copying code templates. The Object Browser displays Visio proper-
ties, methods, events, and constants as members in the Members Of
list. The Details pane displays the syntax for the members as a code
template that you can copy and paste or drag and drop into a module
and substitute the appropriate variables and arguments. Using code
templates decreases the chance of typing errors.

Managing a VBA project
Writing code is only the first step in the process of creating a VBA so-
lution. When you are working on several projects, you can streamline
your efforts by managing those projects well. To work effectively as
well as minimize maintenance tasks down the road, you can use these
project management practices:

••••• Reuse modules, class modules, and user forms to save time
writing code.

••••• Remove project items that are no longer needed to save file space.

••••• Protect your code, if necessary, from being viewed or modified by
users.

Reusing modules, class modules, and user forms. To import an item
into your project, choose Import File from the File menu. You can
choose any VBA module (.BAS), user form (.FRM), or class module
(.CLS) to add a copy of the file to your project. To export an item from
your project so that it will be available for importing into other
projects, select the item you want to export in the Project Explorer,
then choose Export File from the File menu and enter the location in
which you want to save the file. Exporting an item does not remove it
from your project.

You can also drag and drop projects or project items between Visio
files by selecting the project or project item you want to move in the
Project Explorer and dragging its icon onto a Visio project icon. A
project item is automatically stored in the correct project folder. A
project is referenced in the References folder because a Visio file can
contain only one project, but that project can reference other
projects.

NOTE  You cannot drag and drop the ThisDocument class module
between Visio files, but you can drag and drop or copy and paste code
from it into other project items.



5 0 C  H  A  P  T  E  R    2

Add-ons and macros combined

From a user’s point of view, whether the
program he or she runs is an add-on or
macro doesn’t make a difference, so Visio
combines these programs in dialog boxes.
For example, you run a macro or add-on
from the Macros dialog box or from the
Macro menu.

Removing project items. When you remove an item, it is permanently
deleted from the project list—you cannot undo the Remove action.
Make sure remaining code in other modules and user forms doesn’t
refer to code in the removed item. To remove an item, select it in the
Project Explorer, then choose Remove <Name> from the File menu.
Before you remove the item, you are asked if you want to export it. If
you click Yes in the message box, the Export File dialog box opens. If
you click No, the item is deleted.

Protecting your code. To protect your code from alteration and view-
ing by users, you can lock a project. When you lock a project, you set
a password that must be entered before the project can be viewed in
the Project Explorer. To lock your VBA project against viewing,
choose <Drawing Name> Properties from the Tools menu, then click
the Protection tab and select Lock Project for Viewing. Then enter a
password and confirm it. Finally, save your Visio file and close it.

The next time you open the Visio file, the project is locked. If anyone
wants to view or edit the project, he or she must enter the password.

Saving a VBA project
VBA projects are stored in a Visio file that can be a template (.VST),
stencil (.VSS), or drawing (.VSD). When a user creates a new docu-
ment from a Visio file, Visio copies the VBA project and its items to
the new document. To save your Visio file and your VBA project,
choose Save from the Visio File menu or Save <File Name> from the
File menu in the Visual Basic Editor. Both commands save your Visio
file with the project and its items stored in it. After saving the Visio
file, its file name and location are displayed in the Project Explorer in
parentheses after the project name.

Running a VBA program
While building your program, you can run your program within
VBA to test and debug it. This section discusses one common way to
run your program in the Visual Basic Editor during design time. For
details about running and debugging a VBA program, such as adding
breakpoints, adding watch expressions, and stepping into and out of
execution, see Microsoft Visual Basic online help.

Customizing the VBA environment

You can customize your working environ-
ment in VBA by setting options such as font
size, code color, syntax error options, and
variable declaration requirements.

To set environment options, choose Options
from the Tools menu, click the Editor or
Editor Format tab, and then set the options
you want.



T O O L S   F O R   C R E A T I N G  S O L U T I O N S 51

To run your program in the Visual Basic Editor:

1. From the Tools menu, choose Macros.

2. In the Macro list, select the macro you want, then click Run.

If the macro you want is not listed, make sure you’ve chosen the cor-
rect project, module, or drawing in the Macros In box. Private
procedures do not appear in any menus or dialog boxes.

To run only one procedure in a program in the
Visual Basic Editor:

1. In the Project Explorer, open the module that contains the
procedure that you want to run.

2. In the code window, click an insertion point in the procedure
code.

3. From the Run menu, choose Run Sub/UserForm.

Only the procedure in which your cursor is located runs.

After you have finished writing a program, users can run it from
Visio. To do this, they choose Macro, then Macros from the Tools
menu. Or a program can run in response to events or in other ways
that you design. For details about running a program in response to
events, see Chapter 15, “Handling events in Visio.” For other ways to
run a program, see Chapter 17, “Running and distributing a solution.”

To run your program from the Visio Macros dialog box:

1. From the Tools menu, choose Macro, then choose Macros.

2. In the Macro list, select your program, then click Run.

Name of the selected macro

Lists the available macros
and add-ons

Lists the accessible projects,
modules, and drawings



5 2 C  H  A  P  T  E  R    2

If a macro is not listed, make sure you’ve chosen the correct project or
drawing in the Macros In box. Private procedures do not appear in
any menus or dialog boxes.

To run your program from the Visio Macro menu:

1. From the Tools menu, choose Macro.

2. In the Macro list, choose the module that contains your program,
then choose your program.

This illustration shows how your module appears on the Visio Macro
menu and its macros appear on the module’s cascading menu.

If the module that contains your macros is named ShowInMenu, the
ShowInMenu module does not appear on the Visio Macro menu, but
its macros do, as the following illustration shows.

Macro description

To enter a description of your macro that
appears in the Macros dialog box, open the
Object Browser in the Visual Basic Editor,
then choose the project that contains the
macro in the Project/Library list. In the Class
List, select the module that contains the
macros, then right-click the macro in the
Members Of list and choose Properties. In
the Description box, enter a description.



PART   I I

Developing Visio
Shapes





Topics in this chapter

Describing shape geometry .......................................................................... 56

Controlling how shapes stretch and shrink .................................................. 60

Controlling how shapes flip and rotate ........................................................ 64

Grouping and merging shapes ...................................................................... 67

Resizing shapes in a group ........................................................................... 71

Protecting against unwanted changes ......................................................... 78

3
Controlling shape
size and position

When you design a shape, you must decide how it will respond to
user actions, the most common of which are resizing or repositioning
the shape. You can define a shape’s response by writing formulas in
the ShapeSheet cells. Visio records the location of each shape vertex
within the shape’s coordinate space. These vertices, and the paths that
connect them, define the shape’s geometry. By writing formulas to
control shape geometry, you determine how a shape looks and be-
haves in response to user actions.

This chapter defines shape geometry and the Visio coordinate system.
It then describes how to write formulas to control the size and posi-
tion of single shapes and groups.



5 6    C  H  A  P  T  E  R    3

Describing shape geometry

Most drawing programs are based on two-dimensional geometry.
When you draw an object, the program records the object as a collec-
tion of horizontal and vertical locations. These locations, called vertices
in Visio, are measured from a point of origin on the page and are con-
nected with line segments, just as if you were drawing the object on a
piece of graph paper. The sequence of line or curve segments that
connect the shape’s vertices is called a path. Each path corresponds to
a Geometry section in the ShapeSheet window. Each vertex defining a
path corresponds to a row of the Geometry section (except in the case
of splines—for more on splines, see the sidebar).

Visio records each vertex as a pair of x,y coordinates. When you move
the shape or change its size, Visio records the changes to the shape’s
vertices and redraws the object at its new position or size.  What
makes Visio different from other drawing programs is that you can
use formulas to control the location of a vertex. Instead of simply re-
cording a new position when a shape is moved or sized, you can
calculate a vertex in relation to other vertices or other shapes, or con-
strain it to a fixed position on the page. The ability to describe shapes
with formulas opens many possibilities for making shapes behave in
complex and sophisticated ways.

1,1

2,2
4,2.5

x0,0

1,1

x

y

0,0

y

When you create a formula for a shape, Visio recalculates the shape’s vertices on
the basis of your formula.

Describing shapes in a coordinate system
Among the most useful and powerful ShapeSheet formulas are those
that control a shape’s size or position. To move, flip, rotate, or resize
Visio shapes from a formula, you must describe the shape in terms of
the Visio coordinate system.

Width=3
Width=1

Height=1

Splines and the Geometry section

Each vertex of a shape created using the
pencil, rectangle, arc, or ellipse tool is rep-
resented by one Geometry row. A shape
created with the freeform tool, however, is
different. The freeform tool creates a quad-
ratic B-spline, a type of curve that includes
Bézier curves. A spline is represented by
several ShapeSheet rows, whose X and Y
cells don’t match the handles on the spline.
For details about how splines are repre-
sented in the ShapeSheet window, see
“Working with splines” in Appendix A,
“Arcs and splines in Visio.”

Height=Width*0.5



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 57

A shape’s width and height form the two local coordinate axes. The
origin is the lower-left corner of the shape’s width-height box. The
upper-right corner has the coordinates (Width, Height). The Geom-
etry section uses formulas to describe the local coordinates of the
vertices for the paths that make up a shape. By modifying these for-
mulas, you can control a shape’s appearance.

The location of a shape on the drawing page is described in page coor-
dinates, which have their origin at the lower-left corner of the
drawing page. Page coordinates are displayed on the ruler in the units
of measure specified in the Page Setup dialog box.

x

y

x

y

Visio uses different coordinate systems to identify shape vertices and position.

Visio also identifies the position of an object relative to its parent—
the group, if it is a grouped object, or the page. Parent coordinates are
the local coordinate system of the parent. For a shape that is not
grouped, the parent coordinates are the page coordinates. For a shape
in a group, the parent coordinates are the group’s local coordinates.
The origin of the parent coordinate system is the lower-left corner of
the parent’s width-height box if the parent is a group, or the page ori-
gin otherwise.

Visio represents a shape’s width, height, and position on the page
with formulas in the Shape Transform section of the ShapeSheet win-
dow, which uses the parent coordinate system. In the Geometry
section of the ShapeSheet window, Visio expresses the value of each
vertex in a shape as a fraction of the shape’s width or height. When
you move, resize, or rotate a shape, Visio writes new values in the
Shape Transform section, and then reevaluates the vertex formulas in
the Geometry section. For example, a shape can have the formula =3
in. in its Width cell, and the formula Width*1 in a Geometry cell. If
the shape is stretched, the value of the Width cell can increase to 5 in.,
which changes the value of the local coordinates specified in the Ge-
ometry section. The Geometry formula, however, remains Width*1.

Width-height box

Local coordinates

Page coordinates

Page coordinates and the rulers

You cannot move the origin of the page co-
ordinate system. You can, however, change
the zero point of the coordinates displayed
on the rulers by holding down Ctrl and drag-
ging the crossbar at the intersection of the
two rulers. Moving the zero point can be
useful for measuring the distance between
shapes, but it has no effect on the page co-
ordinate system.



5 8    C  H  A  P  T  E  R    3

Positioning shapes on a page
To describe the position of a shape on the page, you refer to the
shape’s pin, or center of rotation. Visio uses two sets of coordinates in
the Shape Transform section to store the location of a shape’s pin:

• The PinX and PinY cells store the pin’s x and y location with
respect to the parent (the group or page); that is, its parent
coordinates.

• The LocPinX and LocPinY cells store the pin’s x and y position
with respect to the shape; that is, its local coordinates.

The pin describes a shape’s position in local and parent coordinates.

To visualize how the pin works, imagine attaching a 3-by-5 index card
to a sheet of paper by pressing a pin through the card, and then
through the paper. You can describe the location of the card on the
paper with respect to the holes created by the pin. That’s how the pin
works in Visio. The local coordinates of the pin (the hole in the card)
are (LocPinX, LocPinY). The parent coordinates (the hole in the pa-
per) are (PinX, PinY). If you pin the card to a different part of the
paper—the equivalent of moving a shape on a page—the card’s hole
doesn’t move with respect to the card. That is, the pin’s local coordi-
nates do not change. However, a new pinhole is formed on the paper,
because the pin’s parent coordinates have changed.

Using formulas to move a shape. To use formulas to move a shape,
you set the values of PinX and PinY. For example, to move the arrow
in the following figure up the page by 1 inch, use this formula:

PinY = 1.5 in.

The local coordinates of the pin describe this
point (Width*0.5, Height*0.5).

The parent coordinates of the pin define
this point.



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 59

Or you could tie the arrow’s position on the page to the width of the
page with a formula such as:

PinX = ThePage!PageWidth - 5 in.

By default, the pin is the center of the shape, which Visio expresses as
formulas that use local coordinates (Width*0.5, Height*0.5). You can
move the pin by writing new formulas in the LocPinX and LocPinY
cells or by choosing a Position option in the grid of the Size & Posi-
tion dialog box. If you move the pin by using the rotation tool, the
values of LocPinX, LocPinY, PinX, and PinY all change so that the
shape stays in the same position on the page.

x

The Shape Transform section includes the local and parent coordinates of the pin.

You can change the values of PinX and PinY by using the Size & Posi-
tion command on the Shape menu. The X and Y options in the Size &
Position dialog box correspond to the values of the PinX and PinY
cells. If the formulas in these cells are guarded, however, these dialog
box options do nothing. For more on guarding, see the sidebar.

Hiding shape geometry
Every Geometry section includes a NoFill and NoShow cell that con-
trol whether a shape can be filled and whether its geometry is visible.
If the NoFill cell is set to TRUE, the shape cannot be filled and appears
hollow. To hide all shape geometry described by a Geometry section,
set the NoShow cell to TRUE.

The NoFill and NoShow cells are not labeled with these names. Al-
though they appear to be the Geometry.A1 and Geometry.B1 cells,
the NoFill cell is represented internally as Geometryn.NoFill, and the
NoShow cell is actually Geometryn.NoShow. In cell references, use
Geometryn.NoFill and Geometryn.NoShow to access these cells.

Protecting pin formulas

When a user moves or stretches a shape,
Visio writes new values to the Shape Trans-
form section and overwrites the affected
cells’ formulas, including those in the PinX
and PinY cells. To ensure that user actions
on the page do not overwrite your pin for-
mulas, you can use the GUARD function. If
you guard PinX formulas, users won’t be
able to move the shape horizontally. If you
guard PinY formulas, they can’t move it
vertically.

You can also set the LockRotate,
LockMoveX, and LockMoveY cells to pre-
vent users from rotating or moving the
shape. For details about protection locks
and the GUARD function, see “Protecting
formulas” later in this chapter.

The parent coordinates of the pin

The local coordinates of the pin



6 0    C  H  A  P  T  E  R    3

The NoShow and NoFill cells in the Geometry section

You can use these cells to design shapes for which the geometry is not
visible or visible only at certain times. For example, if a shape has
multiple Geometry sections, you can hide the shape component rep-
resented by one Geometry section, or control which component is
filled. For details about adding a shortcut command that controls
whether shape geometry is visible, see “Defining shortcut menu
commands” in Chapter 4, “Enhancing shape behavior.” For details
about filling shapes with multiple Geometry sections, see “Merging
shapes” later in this chapter.

Controlling how shapes stretch and shrink

You can use ShapeSheet formulas to control the way a shape shrinks
and grows in response to actions of Visio users. Users generally resize
a shape by moving its selection handles, but they might also edit a
shape’s vertices with the pencil tool. The following sections describe
how to create a shape that resizes in only one direction and how to
create curved shapes that resize the way you want.

Resizing a shape in one direction
You can design a shape that uses different rules for stretching, de-
pending on whether the user drags a width or a height handle. One
such method is to use a height-based formula, which preserves a
shape’s aspect ratio by defining its width in terms of its height. To do
this for only part of a shape, you can place a height-based formula in
the relevant Geometry cells, depending on which part of the shape
you want to control.

Documenting your solution

You can save time and trouble if you
document shapes as you develop them,
especially those with smart formulas.
When you’re working with dozens of
shapes, it’s easy to forget the techniques
you’ve learned while developing a particu-
lar shape. If you document your shapes,
you’re more likely to reuse formulas you’ve
used in shapes, rather than reinvent them.

To document your shapes:

• Write specifications for shapes before
you develop them.

• Keep notes about changes to shapes as
you make them.

• Document your formulas.

• Keep an inventory of your stencils.

The NoShow cell, which indicates
whether the shape is invisible

The NoFill cell, which indicates
whether the shape can be filled



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 61

An example that shows this type of behavior is an arrow drawn with
the line tool. Visio puts default formulas into the arrow’s ShapeSheet
cells that cause the arrow to resize proportionately when stretched
horizontally or vertically, as the following figure shows.

Original arrow with Resized width Resized height
default formulas

Resizing the original arrow changes the proportions of the shape; arrows of
different lengths have different-sized arrowheads, which looks inconsistent.

If you’re using the arrow in a chart, its tail should stretch and shrink
horizontally to represent different values, but the arrowhead should
remain a constant size. If the shape is stretched vertically, the arrow-
head should resize proportionately. Because the arrowhead’s width is
proportionate to its height, a height-based formula can describe the
base of the arrowhead (the line connecting vertices 3, 4, 6, and 7 in
the following figure) as a fraction of the shape’s height.

y

x

➋

➊

➌

➍

➎

➏

➐➑

Each vertex corresponds to a line in the Geometry section.

Vertex 5 falls exactly halfway between the top and bottom of the
shape, so its y-position can be shown as Height*0.5. If we define the
x-distance from vertex 5 to the base of the arrowhead in terms of the
height, the arrowhead will resize proportionately when the shape is
stretched vertically, but it will not change when the shape is stretched
horizontally. The base of the arrowhead is equal to the width of the
shape minus the distance from vertex 5 to the base, or:

All y-coordinates are by default
multiples of Height.

All x-coordinates are by default
multiples of Width.

Height * 0.5

Height * 0.5



6 2    C  H  A  P  T  E  R    3

= Width – Height * 0.5

This formula describes the x-coordinate of each vertex along the base
of the arrowhead (vertices 3, 4, 6, 7). For efficiency, we’ll place the for-
mula only in the cell for vertex 3 and refer the other cells to this value.
The x-coordinate of vertex 3 corresponds to the X3 cell of the Geom-
etry1 section. The resulting geometry for the proportionate arrow is
shown in the following table.

y

x

➋

➊

➌

➍

➎

➏

➐➑

Vertices and formulas that describe the geometry of the arrow

Custom formulas in the Geometry section

Geometry1 X Y

➊ Start = Width * 0 = Height * 0.75

➋ LineTo = Width * 0 = Height * 0.25

➌ LineTo = Width – Height*0.5 = Height * 0.25

➍ LineTo = Geometry1.X3 = Height * 0

➎ LineTo = Width * 1 = Height * 0.5

➏ LineTo = Geometry1.X3 = Height * 1

➐ LineTo = Geometry1.X3 = Height * 0.75

➑ LineTo = Geometry1.X1 = Geometry1.Y1

Using variations on the height-based formula, you can control the
way shapes resize. For details about using a height-based formula
with a 1-D shape, see Chapter 5, “Making shapes connect: 1-D shapes
and glue.”

Reducing calculations in formulas

Because the arrow is symmetrical, you
can use cell references to reduce the num-
ber of calculations, which makes the shape
easier to customize. For example, the
Geometry1.Y1 and Geometry1.Y7 cells,
which contain this formula:

Height * 0.75

can also be expressed as:

Height – Height * 0.25

The Geometry1.Y2 cell already contains the
formula Height * 0.25, so you can create a
cell reference to it. The reduced formula in
Geometry1.Y1 and Geometry1.Y7 is then:

Height – Geometry1.Y2

Now the arrow requires only the two cus-
tom formulas, Height * 0.5 and Height * 0.25,
to calculate the vertices. And by changing
only one formula (Height * 0.25), you can
alter the arrow’s look.

All points on the base of the arrowhead
have the same x-coordinate:

Width – Height * 0.5.

The base of the arrowhead is defined
as a fraction of Height.

Height

Height * 0.75

Height * 0.5

Height * 0.25

Width



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 63

Creating curved shapes that resize smoothly
When you want to create a shape with rounded corners, you can apply
a rounded corner style or create an arc, depending on how you want
the shape to resize. The following figure shows the results of using
these methods.

How shapes with different corners resize

If you use the Corners command, you apply a rounded style to a line’s
corners that users can later change by applying a different style. The
shape’s geometry does not change, only the way it is drawn onscreen.
Although a shape with a rounded corner style resizes as expected, it
can easily be overwritten by a new line style that specifies different (or
no) corner attributes.

If you draw the shape with the pencil, line, arc, or rectangle tool, you
can connect the straight portions with an elliptical arc segment. Us-
ing arc segments for this purpose is more reliable, because arc
segments don’t depend on the line or corner style. As a shape is
stretched, the beginning and ending vertices of a curve generally
move in proportion to the stretching. An elliptical arc can change its
eccentricity to maintain smoothness.

You can convert a line or elliptical arc to a circular arc segment by ed-
iting the appropriate row in the Geometry section. (See the
“Converting line and arc segments” sidebar on this page.) A circular
arc tries to fit a circle between the beginning and ending vertices. The
result can be a bulge or a sharp edge between a curve and a line. To
prevent this distortion, you can control the bow of the arc with
ShapeSheet formulas. Creating a shape with rounded corners in this
way ensures that the shape’s corners span a set angle, so that the cor-
ners resize smoothly. For details about writing formulas to control an
arc, see “Useful arc formulas” in Appendix A, “Arcs and splines in Visio.”

Converting line and arc segments

You can change a straight line segment to
an arc segment and vice versa. In some
cases you can use the pencil tool; other-
wise, you can edit the ShapeSheet interface
to convert a path to the line or arc segment
you want. The method you use depends on
whether you’re working with an elliptical
or circular arc segment. Do one of the
following:

• To change a line to an elliptical arc,
select the pencil tool, point to the line
segment’s control point, then drag to
form an arc.

• To change a line to a circular arc, in the
ShapeSheet window, select the LineTo
row in the Geometry section that repre-
sents the segment you want to change.
From the Edit menu, choose Change Row
Type, then choose ArcTo.

• To change either an elliptical or circular
arc to a straight line, select the pencil
tool, point to the arc’s control point, then
drag until it “snaps” into a straight line.

Changing the row type can alter a shape’s
width-height box and overwrite proportional
or height-based formulas. For this reason,
you may want to set LockCalcWH to TRUE in
the Protection section before changing a
row type.

Rectangle with rounded corners
stretches without affecting the

curvature of its corners.

Circular arcs may distort the
shape when it is resized.

Elliptical arcs resize
smoothly with the
shape, but the resulting
corners may not be
what you want.



6 4    C  H  A  P  T  E  R    3

Controlling how shapes flip and rotate

When you create a master, you need to anticipate how the user will
flip or rotate the shape, and then design appropriate behavior. The
Shape Transform section in the ShapeSheet window records a shape’s
orientation with respect to its parent. When a user flips or rotates a
shape, the Shape Transform section reflects the actual transformation
that occurs.

How flipping affects a shape
If you are designing shapes that users can flip, you need to be aware
of the different behaviors that result depending on the method that
was used. To flip a shape, users can:

• Choose the Flip Vertical or Flip Horizontal commands from the
toolbar or Shape menu.

• Choose the Size & Position command from the Shape menu, then
use the Flip Vertical or Flip Horizontal checkboxes.

• Set the value of the FlipX or FlipY cell in the Shape Transform
section.

When a shape is flipped, the value of its FlipX or FlipY cell changes to
TRUE. The parent coordinates of the shape’s origin change, but the lo-
cation of the shape’s pin doesn’t change with respect to either its local
or parent coordinates. In the following figure, the shape is rotated to
show more clearly the interaction of the FlipX and FlipY cells.

x

y
x

x

y
x

x

y

x

y
x

x

y
xx y

x

y

xy

Local coordinates of a rotated shape as FlipX and FlipY values are changed

FlipX = 0
FlipY = 0

Angle = 30 deg.

FlipX = 0
FlipY = 1

Angle = 30 deg.

FlipX = 1
FlipY = 0
Angle = 30 deg.

FlipX = 1
FlipY = 1
Angle = 30 deg.



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 65

Depending on which of the previous methods a user employs to flip a
shape, two different shape transformations can result. Using the Size
& Position command to flip a shape has the same effect as editing the
values of the FlipX and Flip Y cells in the Shape Transform section.
For example, setting the value of the FlipX cell to TRUE flips the shape
horizontally by reversing the direction of the shape’s local x-coordi-
nate axis. However, when a user chooses the Flip Horizontal
command from the toolbar or Shape menu, the shape appears to flip
about a vertical line in the page coordinate system that passes
through the shape’s pin. The value of the FlipX cell is toggled between
TRUE and FALSE, and the value of the Angle cell becomes –angle, a dif-
ferent shape transformation, as the following figure shows.

Original shape Effect of the Flip Effect of setting only
Horizontal command FlipX = 1 (TRUE)

x

y

x

x

y

x

y
xy

x

x y
x

x

y

The Flip Horizontal command both flips and rotates the shape.

Using the Flip Vertical command on the toolbar or Shape menu has
the effect of toggling the value of the FlipY cell and changing the
value of the Angle cell to –angle.

How rotating affects a shape
To rotate a shape, a user can drag a shape handle with the rotation
tool or use the Size & Position command on the Shape menu, which
includes an editable Angle field. When a shape is rotated, the value in
the shape’s Angle cell describes the rotation of the local coordinate
system with respect to the parent coordinate system. A shape rotates
about its pin: The parent coordinates of a shape’s origin change as the
shape is rotated, but the location of the shape’s pin doesn’t change
with respect to either its local or parent coordinates.

If page rotation is enabled, users can rotate the drawing page, which
causes existing shapes and guides to appear to rotate as well. However,
a shape’s coordinates and Angle cell do not change regardless of the
page’s rotation. For details about rotating pages, see “Working with
rotated pages” in Chapter 8, “Scaling, snapping, and aligning.”

Page coordinate system



6 6    C  H  A  P  T  E  R    3

Designing shapes that flip and rotate
Will users flip and rotate your shapes? In some cases, you may want to
prevent them from doing so, and in other cases you can design your
shapes to accommodate these actions. You can prevent a shape from
being rotated by guarding the value of its Angle cell with this formula:

Angle = GUARD(0 deg.)

The shape can still be flipped, but users will not be able to use any of
the Visio tools to rotate it except by changing the value of the Angle
cell. You can also prevent a shape from being rotated with the rota-
tion tool by setting the LockRotate cell in the Protection section.
Padlocks appear on the shape’s rotation handles, giving users a visual
clue that is not provided when you guard the value of the Angle cell.
However, the lock doesn’t prevent the shape from being rotated by
means of the Flip Vertical and Flip Horizontal commands.

To prevent a shape from being flipped, guard the values of the FlipX
and FlipY cells:

FlipX = GUARD(0)

FlipY = GUARD(0)

If you expect users to flip and rotate your shape, you can design the
shape to work at different angles and orientations. For example, you
can change the way a shape flips or rotates by moving its local pin. In
the following figure, when a user flips the transistor symbol vertically,
the horizontal lead stays in position. When the shape is flipped hori-
zontally, the vertical lead stays in position. This behavior makes the
transistor flip appropriately in electrical schematics with cascaded
transistors.

The transistor shape unflipped, flipped vertically, and then flipped horizontally

The local pin is aligned
with the vertical leads and

with the horizontal leads.

The horizontal
lead doesn’t
move.

The vertical
lead doesn’t
move.



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 67

To change the location of a shape’s pin, you can use the rotation tool
to drag the pin to a new location. Doing this changes the values of
PinX and PinY, but the LocPinX and LocPinY formulas also change
to counteract the pin movement so that the shape doesn’t jump on
the page. You can also move the pin by changing only the values for
the LocPinX and LocPinY cells, which changes the relationship be-
tween the local pin and the parent pin, so the shape also moves. For
example, the transistor shape offsets the local pin with the following
formulas:

LocPinX = Width * 0.75

LocPinY = Height * 0.5

Some shapes, such as the transistor symbol shown below, are com-
monly rotated by multiples of 90 degrees. You can create such a shape
so that its alignment box coincides with the grid and its pin and any
connection points lie on grid points. That way, the shape will snap
into alignment more quickly when a user flips or rotates it. For details
about working with the grid, see Chapter 8, “Scaling, snapping, and
aligning.”

A transistor symbol designed to rotate in multiples of 90 degrees

Grouping and merging shapes

When you need to draw shapes with complex geometry or control the
behavior of multiple shapes, you can group or merge the shapes. The
method you choose can affect performance for your users and affects
how you work with the resulting shape’s ShapeSheet interface. De-
pending on how you want the resulting shape to look and behave,
choose one of these methods to join multiple shapes:

• Use the Group command (Shape menu, Grouping submenu) to
combine several shapes or other groups into a new Visio shape
whose components can still be edited and formatted individually.

When the shape is rotated, the connection
points always fall on grid lines.

The alignment box is a multiple of the
grid, and the pin is also on a grid point.



6 8    C  H  A  P  T  E  R    3

• Use an Operations command on the Shape menu (Combine,
Union, and so on) to combine multiple shapes into a single new
shape with multiple Geometry sections corresponding to the
original component shapes.

For users, interaction with a group is similar to interaction with a
merged shape that has multiple Geometry sections. With both groups
and merged shapes, users can rotate and add text. However, there are
significant differences between groups and merged shapes. When
choosing between them here are some things to consider:

• Only with a merged shape can users edit vertices, unless they
open the group in the group editing window.

• Only with a group can users apply different styles and text
formats to the shapes that make up the group.

• A group can always be ungrouped to recover the individual
shapes, unlike a merged shape. Moreover, merging a shape by
using any of the commands on the Operations submenu will
overwrite user-built formulas.

• A merged shape is represented by a single ShapeSheet interface
and often responds faster to user actions than a group. In a group,
each component shape retains its separate ShapeSheet interface,
plus the group is represented by a ShapeSheet interface.

Grouping and ungrouping shapes
You should create a group when you want several shapes to move and
size together, yet retain their individual formatting attributes. The
Group command adds a ShapeSheet representation for the group and
modifies formulas in the component shapes to refer to the group
(specifically, it modifies formulas the Shape Transform or 1-D End-
point sections), but it doesn’t overwrite individual shape formatting.

Lorem

A group composed of two shapes with different formatting attributes

The inner and outer shapes are formatted
with different line and fill patterns.

Masters that are groups

To create a single master that is composed
of several shapes, it is best to group or
merge the shapes first. If you don’t create
the group or merged shape, Visio will group
the shapes when a user drags the master
into a drawing—an additional step that can
increase the time required to create an in-
stance of the master.

A group does not have its own text block,
so Visio uses the topmost shape’s block.



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 69

When you add a shape to a group, its parent coordinate system is no
longer the page, but the group. When you ungroup shapes or remove
the last shape from a group, the group is no longer the parent, and the
group sheet is deleted. ShapeSheet formulas that refer to parent coor-
dinates change when you group or ungroup the shape, and custom
formulas that you define for a shape can be overwritten. For this rea-
son, it’s best to group shapes before adding connection points or
defining custom formulas, which often must reference the group in
order to work properly.

The following table shows the cells that are reset with new formulas
when you group and ungroup shapes.

ShapeSheet changes when a shape is grouped or ungrouped

Section Cell What happens

Shape Width After grouping, formulas reference the group to define the shape’s size in

Transform Height proportion to group’s size; for example, Sheet12!Width * 0.5 (where Sheet12

is the group). After ungrouping, formulas reference the width and height of

the new parent or are constant if the new parent is a page. Formulas

protected with the GUARD function aren’t affected.

PinX Formulas base the pin coordinates on the group’s or new parent’s

PinY coordinate system. After grouping, formulas define the pin’s location in

proportion to the group width and height.

1-D BeginX, BeginY, Formulas base the coordinates of the begin and end points on the parent’s

Endpoints EndX, EndY coordinate system. After grouping, formulas define the endpoints’ position

in proportion to the group width and height.

Alignment [all cells] Formulas base the position of the alignment guide on the group’s or new

parent’s coordinates.

When you group shapes that are connected to other shapes, Visio
maintains the connections, unless a shape is connected to a guide that
has—or as a result of the grouping will have—a different parent. If a
shape is glued to a guide and you add the shape (but not the guide) to
a group, Visio breaks the shape’s connection to the guide. The reverse
is also true: If you add a guide to a group, but don’t also add shapes
that are glued to that guide, Visio breaks the shapes’ connections to
that guide. If you include both the guide and the shapes that are
glued to it, Visio maintains the connections.

Group coordinate system

A group’s local coordinates are the ones
shown on the rulers of the group editing
window. To display this window, select the
group, then choose Open Group from the
Edit menu.



7 0    C  H  A  P  T  E  R    3

Merging shapes
When you want to create a single shape with multiple Geometry sec-
tions, use the Union, Combine, Fragment, Intersect, Subtract, Join, or
Trim commands on the Operations submenu of the Shape menu.
Unlike the Group command, these commands merge the geometry of
several shapes to create a single shape that can have more than one
Geometry section for each path.

When you merge shapes, the original shapes, and any custom formu-
las in them, are not retained, and you cannot recover them by
ungrouping as you can do with grouped shapes. A merged shape has
only one text block and one set of formatting attributes, as the follow-
ing figure shows. Otherwise, the shape behaves like any other single
shape.

When you merge shapes with different formats, the resulting shape inherits the
attributes of the first shape you select.

You can selectively control the geometry of merged shapes. For ex-
ample, to create a doughnut shape, draw two concentric circles, then
use the Combine command. The resulting shape has one Geometry
section for the outer circle and one for the inner. If you apply a fill
color to the shape, it fills as you would expect a doughnut to. But
what if you wanted a filled circle with another filled circle inside? You
can do this by setting the value of the NoFill cell in the Geometry sec-
tion for the smaller circle to TRUE.

Two concentric circles joined using the Combine command, then filled with
a color

Viewing multiple Geometry sections

If a merged shape has multiple Geometry
sections, it’s not easy to tell by looking
which part of the shape’s geometry a Geom-
etry section refers to. One method is to tile
the ShapeSheet window and the drawing
page window, and then click a Geometry
cell. Visio highlights the corresponding
vertex in the drawing page.

Select the gray cross first,
then the other three shapes.

Using the Union command
results in a shape with the attributes

of the gray cross.

In the Shape Transform
section, the NoFill cell of
the smaller circle is set
to TRUE.

For both circles, NoFill = FALSE



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 71

Resizing shapes in a group

When you resize a group, you need to consider how the size and posi-
tion of the component shapes should change within the group. As a
group is resized, its component shapes are typically stretched and re-
positioned to maintain their proportions in the group coordinate
system. However, some shapes represent objects with fixed physical
dimensions. When the group changes size, you can define these
shapes to change position only, but not change their size or propor-
tions. You can set group attributes that govern how component
shapes are resized and positioned.

When you work with formulas in grouped shapes, you’re working
with local coordinates, parent coordinates, and page coordinates, as
the following figure shows. Defining different resize behavior for a
grouped shape can involve converting coordinates from one system
to another.

y

x

y

x

y

x

A shape in a group in the Visio coordinate system

Defining the resizing behavior of grouped shapes
When a group represents a physical object, its resizing behavior
should reflect the physical object’s behavior in the real world. In some
cases, that will mean when a group is resized, some component
shapes will be resized and others will not. For example, in the follow-
ing figure, the island group contains a countertop, range, and sink.
The range and sink represent physical objects of industry-standard
size that should not resize with the island. A countertop, however, can
be constructed to any size and should resize with the island.

Local coordinates

Parent coordinates

Page coordinates



7 2    C  H  A  P  T  E  R    3

Original group

By default, component shapes If ResizeMode is 1, the sink
resize when the group is resized. and stove are only repositioned.

You can control a component shape’s or group’s resizing behavior
with the ResizeMode cell in the Shape Transform section. To control a
component shape in a group, set the value of ResizeMode for the
component shape. For example, set ResizeMode to 1 for the sink,
then group the sink with the countertop. The following table shows
the resizing options you can use.

ResizeMode settings in Shape Transform section

Value Description

0 Shape resizes according to the group’s ResizeMode setting.

Corresponds to Use Group’s Setting in Behavior dialog box.

(This is the default.)

1 Shape keeps its size when the group is stretched; only its

location within the group changes. Corresponds to Reposition

Only in Behavior dialog box.

2 Shape resizes proportionally when the group is stretched.

Corresponds to Scale With Group in Behavior dialog box.

When you set a different resizing behavior, do it for the highest-level
shape possible—for example, protect the stove rather than each
burner. To keep users from accidentally resizing a shape in a group,
set ResizeMode to 1, and also set LockWidth and LockHeight to 1 in
the Protection section. If you set locks for a shape’s width, height, or
aspect ratio and then add the shape to a group, the shape’s resizing
behavior takes precedence over the locks. When a user opens the
group in the group editing window, however, the shape’s attributes
will still be locked so that it can’t be resized.



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 73

Resizing shapes in only one direction
When you want different shapes in a group to resize differently, you
can customize the component shapes’ resizing behavior. For example,
the 3-D box shape in the following figure is a group made up of three
shapes: one for the face of the box, one for the top, and one for the
side, each of which resizes differently. When you resize the face, it
stretches proportionately in width and height, but the top stretches
only in width, and the side stretches only in height. This way, the
shape maintains its 3-D look as it is stretched.

The top and side of the 3-D box stretch in only one direction when the box is
resized.

You use two key techniques to get this kind of resizing behavior in a
group:

• You define the dimension of the component shape that doesn’t
resize as a constant value and the dimension of the shape that
does resize in terms of the corresponding group dimension.

• You move the pin of the component shape to the origin in its
local coordinate system (the lower-left corner of the local x- and
y-axis). Then you define the shape’s parent pin in terms of the
group’s width or height, so that the location of the component
shape is always fixed with respect to the group. Otherwise, the
component shape moves with respect to the parent coordinate
system when the group is resized.

Top

Side
Face

The depth of the top and
side doesn’t change.



7 4    C  H  A  P  T  E  R    3

In the 3-D box shape, the top’s height and the side’s width are both
constant values, because they shouldn’t resize when the group is
resized. The top’s width is defined in terms of the group width, so the
top can resize in the direction of width. Similarly, the side’s height is
defined in terms of the group height, so the side resizes in the direc-
tion of height.

The face shape defines the alignment box for the group, because its
size and position determine the size and position of the top and side.
The parent pin defines each component shape’s position at the ap-
propriate edge of the group alignment box. For the top, the
x-coordinate of the parent pin is 0 in., and its y-coordinate is the
same as the group’s height. For the side, the x-coordinate of its parent
pin is equal to the group’s width, and its y-coordinate is 0 in.

It’s easiest to see the relationship between the component shapes’
width and height and the group’s width and height if you draw the
shape without angled vertices, as in the following figure.

x

y

+

+

Exploded view of the 3-D box shape

Creating a 3-D box: an example
Using the techniques described in the previous section, you can cre-
ate a shape with resizing behavior similar to the 3-D box. One shape
defines the alignment box for the group, and the component shapes
are fixed in position with relation to the alignment box. In addition,
the component shapes resize in only one direction as the group is
resized.

To draw the actual 3-D box group, you need to:

• Define the group’s custom alignment box by drawing the face of
the 3-D box first, grouping it, then locking the alignment box.

Pin

<group sheet id>!Height

<group sheet id>!Width

<group sheet id>!Width

<group sheet id>!Height

Pin



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 75

• Roughly draw the top and side shapes as simple rectangles, then
add them to the group.

• Modify the vertices of the top and side to give them a 3-D look.

• Customize the Width, Height, and Pin formulas of the top and
side shapes to control their resizing behavior.

As the following figure shows, vertex 2 of the top and vertex 3 of the
side are skewed. The y-position of the top’s vertex 2 is equal to that
shape’s height. The x-position of the side’s vertex 3 is equal to that
shape’s width. Top height and side width are a constant value, 0.125
in. By adding this constant to the appropriate vertex formulas, we get
a skewed shape.

x

y

➊
➋

➌

➊
➋

Local coordinates for the component shapes of the 3-D box

To draw the 3-D box as a group:

1. Use the rectangle tool to draw the face, top, and side.

Don’t worry about drawing the top and side in perspective; just
draw rectangles in approximately the right position.

2. Select just the face, and group it.

3. Select the group, choose Show ShapeSheet from the Window
menu, and then set the formula for the LockCalcWH cell in the
Protection section to 1.

This step preserves the current alignment box. Otherwise, the
group alignment box changes as you add the top and side shapes.

4. Select the group. From the Edit menu, choose Open Group to
open the group editing window. Then select the top and the side
and drag them into the group window to add them to the group.

Height = 0.125 in.

Local coordinates of the group

Width + 0.125 in.

Height + 0.125 in.

Width = 0.125 in.



7 6    C  H  A  P  T  E  R    3

5. In the group’s ShapeSheet window, add the Scratch section, then
enter the following formulas:

Scratch.X1 = 0.125 in.

Scratch.Y1 = 0.125 in.

Scratch.X1 controls the width of the side. Scratch.Y1 controls the
depth of the top.

6. Reference the constant values of the top and side shapes.

To do this, in the group window, select the top shape, choose
Show ShapeSheet, and add a Scratch section. Do the same for the
side shape. In the top’s and side’s Scratch sections, enter these
formulas:

Scratch.X1 = <group sheet id>!Scratch.X1

Scratch.Y1 = <group sheet id>!Scratch.Y1

You must supply your group’s ID in these formulas. For example,
if the group’s ID is Sheet.4, the formula for the X1 cell would be
Sheet.4!Scratch.X1.

7. Define the skew for the vertices in the top and side shapes.

To do this, you customize formulas in the Geometry section, as
the following tables show.

Custom formulas in the Geometry section for the top

Row X Y

1 (Start) = 0 in. = 0 in.

2 (LineTo) = Scratch.X1 = Height

3 (LineTo) = Width + Scratch.X1 = Height

4 (LineTo) = Width = 0 in.

5 (LineTo) = Geometry1.X1 = Geometry1.Y1

Enhancing group performance

To enhance performance, keep the total
number of shapes in a group to a minimum,
and use no more cell references between
shapes than is necessary. For example, in
step 6 of the procedure, you could refer to
the group’s Scratch section in the formulas
for the shapes’ vertices; however, perfor-
mance is best if you keep references to
cells in other shapes to a minimum. By add-
ing a Scratch section to the top and side,
you need only one reference to the group’s
row per section instead of several.

Another way to improve performance is to
keep the number and level of nested groups
to a minimum. Although you can add a group
to a group, fewer groups generally result in
faster performance. You can always use an
Operations command to merge similar parts
of a shape, then group the parts.



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 77

Custom formulas in the Geometry section for the side

Row X Y

1 (Start) = 0 in. = 0 in.

2 (LineTo) = 0 in. = Height

3 (LineTo) = Width = Height + Scratch.Y1

4 (LineTo) = Width = Scratch.Y1

5 (LineTo) = Geometry1.X1 = Geometry1.Y1

8. Define the resizing behavior for the top and side shapes.

To do this, you customize the Width, Height, and Pin formulas in
the Shape Transform section. For the top, use these formulas:

Width = <group sheet id>!Width

Height = Scratch.Y1

PinX = 0 in.

PinY = <group sheet id>!Height

LocPinX = GUARD(0 in.)

LocPinY = GUARD(0 in.)

In the Shape Transform section for the side, use these formulas:

Width = Scratch.X1

Height = <group sheet id>!Height

PinX = <group sheet id>!Width

PinY = GUARD(0 in.)

LocPinX = GUARD(0 in.)

LocPinY = 0 in.More 3-D box formulas

One way to alter the 3-D box group is to use
a control handle to set the depth of the per-
spective. To do this, you remove the width
and height constants from Scratch.X1 and
Scratch.Y1 of the group, and enter them in-
stead in Controls.X1 and Controls.Y1
respectively of the Controls section. Then
edit Scratch.X1 to reference Controls.X1,
and edit Scratch.Y1 to reference
Controls.Y1. As the control handle is
dragged on the drawing page, the custom
formulas in the top’s and side’s Width and
Height cells will change accordingly. For
details about control handles, see
Chapter 4, “Enhancing shape behavior.”



7 8    C  H  A  P  T  E  R    3

Protecting against unwanted changes

Most actions in the drawing page affect the ShapeSheet cells and so
can affect the specialized behavior and custom formulas you have de-
signed for a shape. You can set constraints on shape behavior, called
locks, that prevent particular actions in the drawing page. You can
also use specialized techniques to prevent your custom formulas from
being overwritten by user or Visio actions.

For example, at Visio we created a grand piano shape in the home
planning stencil. Pianos come in different sizes, but they are built
only one way—the higher strings are always to the right as you face
the keyboard. To protect this characteristic, the piano shape is locked
against horizontal flipping. You can still rotate the piano—as you
could if you were pushing it around the room—but you can’t flip it.

Using locks to limit shape behavior
One of the simplest ways to protect your shapes is to set the lock cells
in the Protection section of the ShapeSheet window. Setting locks
prevents accidental changes to a shape. For example, if your shapes
represent items with standard dimensions, such as building materials,
you can lock their resizing handles, because users shouldn’t be able to
stretch the shapes in all directions. Setting some locks causes a pad-
lock symbol to appear in place of some or all selection handles on the
shape, indicating to the user that the feature cannot be edited.

Setting protection locks gives the user visual feedback.

To lock a feature, set the appropriate cell in the Protection section to
a nonzero number. To unlock a feature, type 0 in the cell. You can also
set some locks with the Protection command on the Format menu.

Padlocks indicate that the shape
cannot be sized.



C O N T R O L L I N G   S H A P E   S I Z E   A N D   P O S I T I O N 79

Setting locks doesn’t affect the menu commands that are enabled and
doesn’t protect other ShapeSheet cells from change. For example, if
you lock the width and height of a shape that is in a group and then
scale the group, the width and height of the shape can change. Lock-
ing only prevents the user from scaling the shape with the mouse.

Protecting formulas
The only way to protect the formulas in individual ShapeSheet cells
from change is to use the GUARD function. GUARD protects the entire
formula in a cell; it cannot protect parts of formulas. Actions in the
drawing window cannot overwrite ShapeSheet formulas protected by
the GUARD function, except when a user applies a style. The GUARD

function uses this syntax:

GUARD(expression)

When a shape is moved, resized, grouped, or ungrouped, Visio writes
changes to ShapeSheet cells that can overwrite custom formulas. The
cells most commonly affected by such actions are Width, Height,
PinX, and PinY in the Shape Transform section. For example, to pre-
vent a shape from being flipped, you can enter the formula:

FlipX = GUARD(0)

FlipY = GUARD(0)

The exception to the protection rule is the application of a style,
which always overwrites formulas in the affected cells, even if they’re
protected by the GUARD function. Applying a style can overwrite the
formulas of the Line Format, Fill Format, Text Block Format, Charac-
ter Format, and Paragraph Format sections. For details, see
“Protecting local shape formats” in Chapter 7, “Managing styles, for-
mats, and colors.”

A single action in the drawing window can affect several ShapeSheet
cells. You must guard the formulas in each of these cells if you want to
prevent unexpected changes to the shape. Of course, if a user deletes
a ShapeSheet section, all the formulas in it, including guarded ones,
will be deleted.

GUARD and protection locks

The GUARD function and protection locks
protect your shapes in complementary
ways. The GUARD function prevents formulas
from changing, but it allows user actions. By
contrast, setting locks in the Protection sec-
tion prevents user actions without
protecting cell formulas.

For example, if you use the formula Width =
GUARD(5 pica), users can stretch the selec-
tion handles, but the shape snaps back to its
original width. If you use the formula
LockWidth = 1, users cannot drag the
shape’s side selection handles.

For details about the syntax of the GUARD
function, search online help for “guard
function.” For details about locks, search
online help for “protection section.”



8 0    C  H  A  P  T  E  R    3

Protecting the formatting of shapes in groups
When you locally format a group by choosing a command from the
Format menu, you’re also applying the format to all of the shapes in
the group. Any local formatting you’ve applied to those shapes can be
overwritten by the formatting applied to the group, and if you’ve
used formulas to change the formatting of the component shapes,
those formulas are also overwritten. To avoid this effect, you can:

• Protect specific formatting cells with the GUARD function.

• Lock a group against formatting changes.

• Selectively prohibit application of styles to some or all of the
shapes in a master.

To protect specific ShapeSheet cells from changing when a user lo-
cally formats a shape, use the GUARD function. Although GUARD

protects against local formatting, it can’t protect a formula when a
user applies a style to a group. The style overwrites the formulas in
the formatting cell for the attributes included in the style definition.
To apply a style to a group but keep your local formulas, use the Style
command and check the Preserve Local Formatting option as you ap-
ply the style.

You can lock a group against formatting with the LockFormat cell in
the Protection section of the group. This lock prevents a user from
applying a style or local format to the group. When a user tries to do
so, Visio displays a message indicating that the action isn’t allowed.

When you lock a group against formatting, the shapes in the group
can still be subselected and individually formatted unless you set the
LockFormat cell for every shape in the group. You can also selectively
lock against formatting in a group when you want to allow users to
format some shapes but not others.

Styles versus local formatting

A shape that is formatted by applying a style
may look no different from a shape that is
locally formatted, but Visio treats them dif-
ferently. To format a shape with a style,
select the shape, then choose a style from
the Text, Line, or Fill boxes on the toolbar.
Or choose Style from the Format menu. To
locally format a shape, select the shape,
then choose any of the other formatting
commands on the Format menu, such as
Line, Fill, or Text, or click a button on the
toolbar, such as Line Weight or Line Pattern.

When you apply a style to a shape that is
locally formatted, the attributes defined in
the style replace any corresponding local
formatting. Locally formatted attributes that
are not specified in the style are unaffected.
For example, if a shape’s line is locally for-
matted and you apply a text style that
specifies only text formatting, the local for-
matting of the line remains intact, and only
the text style changes.

For details, see Chapter 7, “Managing
styles, formats, and colors.”



Topics in this chapter

Making shapes flexible with control handles ............................................... 82

Defining shortcut menu commands .............................................................. 87

Working with custom properties .................................................................. 92

Assigning shapes and masters to layers ...................................................... 96

4
Enhancing
shape behavior

You can write any number of ShapeSheet formulas to control the ap-
pearance or position of a shape on a page, but there’s more to shape
behavior than geometry and location. A shape can provide informa-
tion to users in the form of visual feedback, such as control handles
with tooltips or custom commands on a shortcut menu. Moreover,
users can associate information with a shape in the form of custom
property data or layer assignments. These enhancements to shape be-
havior can make a shape better model the real-world object it
represents.

This chapter describes techniques and formulas that you can use to
add control handles, shortcut menu commands, custom properties,
and layers to shapes and masters.



8 2 C  H  A  P  T  E  R     4

Making shapes flexible with control handles

One way to control shape behavior, yet provide your users with
greater flexibility, is to add control handles to a shape. Like selection
handles, control handles appear as small green squares that users can
select and move. A shape responds to changes in the control handle’s
position according to your formulas. The following figure shows dif-
ferent uses for control handles in a shape. The real strength of control
handles is that they let you take advantage of user input when design-
ing shape behavior.

7/8"

x

Visio masters with control handles

To add a control handle to a shape, you add a Controls section in the
ShapeSheet window. The Controls section defines control handle at-
tributes. After adding this section, you can write formulas that
reference it to define the handle’s behavior. In the Controls section
you can also define a descriptive tooltip that appears when a user
pauses the mouse over a control handle.

For ideas about using control handles, look at the shapes that come
with Visio. Each shape with a control handle includes tooltip infor-
mation describing the handle’s behavior. For details about
repositioning a text block with a control handle, see “Controlling the
text block’s position” in Chapter 6, “Designing text behavior.”

Users can drag out dimension lines
and adjust line heights.

Users can drag out lines of any
length to connect the token ring.

 Users can orient the
chair in relation to

another shape.



E N H A N C I N G   S H A P E   B E H A V I O R 83

Adding and defining a control handle
You use the cells in the Controls section to define the control handle’s
location and behavior. For example, you can create a word balloon by
adding a control handle, then associating it with a vertex of a rect-
angle, as the following figure shows.

Control handle defined for a vertex of a word balloon

When you add the Controls section to a shape, Visio creates a control
handle with the coordinates Width*0, Height*0. You can move the
control handle, but it doesn’t do anything until you associate it with
the shape’s geometry in some way—typically with the vertex you
want the handle to control. For example, the following figure shows
how the vertex at the balloon’s mouthpiece is associated with the con-
trol handle. The Geometry cell representing the appropriate vertex
contains a cell reference to the Controls section.

➊
➑ ➐ ➎

➍

➌➋

➏

The location of the control handle is defined by the formula in a Geometry cell.

Use a control handle to reposition
the mouthpiece.

To attach the sixth vertex to a control
handle…

…enter the control handle reference in
this Geometry cell.



8 4 C  H  A  P  T  E  R     4

To add a control handle to a shape:

1. Select the shape, then choose Show ShapeSheet from the Window
menu.

2. If the Controls section is not already present, from the Insert
menu, choose Section, and then check Controls. Click OK.

Visio adds a Controls section with one row to the shape, and
adds the control handle to the shape on the drawing page.

3. Put a cell reference to the handle (the Controls.Xn and
Controls.Yn cells) in the cell representing the vertex that the
handle controls.

In general, you enter a formula that refers to the x-coordinate
of a control handle in an X cell of the Geometry section and a
formula that refers to its y-coordinate in a Y cell. For example,
for the word balloon you would enter:

Geometry1.X6 = Controls.X1

Geometry1.Y6 = Controls.Y1

4. In the X Behavior and Y Behavior cells, enter a constant from 0 to
9 to determine how the control handle resizes with the shape.

For details, see “Setting a control handle’s behavior” opposite. For
a list of constants, search online help for “controls section.”

5. In the X Dynamics and Y Dynamics cell, enter a formula to
describe the origin of the control handle’s anchor point.

For details, see “Setting a control handle’s anchor point” later in
this section. For example, for the word balloon you could enter:

X Dynamics = Width/2

Y Dynamics = Height/2

6. In the Tips cell, enter a string for the control handle tooltip.

Visio encloses the string in quotation marks. For example, for the
word balloon you could enter:

Tip = "Reposition mouthpiece"

TIP  As you drag a control handle, the status bar displays the handle’s
local coordinates.

Drawing the word balloon

You can draw the word ballon as a 2-D
shape with an alignment box around the
rectangle part only. To do this, use the line
tool to draw the rectangle and mouthpiece,
but draw the mouthpiece inverted—that is,
pointing into the rectangle instead of out of
it. This way, the alignment box encom-
passes the rectangle. To keep it that way as
the mouthpiece moves, open the
ShapeSheet window and in the Protections
section, set LockW/H to TRUE (1). Now add
the Controls section and formulas to associ-
ate the control handle with a vertex.



E N H A N C I N G   S H A P E   B E H A V I O R 85

Setting a control handle’s behavior
When a user stretches a shape that has a control handle, you can
specify how the handle behaves when the shape is stretched: whether
the control handle moves in proportion to the shape or stays in the
same place relative to the shape. The values of the X and Y Behavior
cells in the Controls section define a control handle’s position and
behavior, as the following table shows. The value of the X Behavior
cell is independent of the value of the Y Behavior cell.

Settings for the X Behavior and Y Behavior cells

Value Control handle behavior when shape is stretched

0 or 5 Moves in proportion with the shape when the shape is stretched.

If 0, handle is visible; if 5, it is not visible.

1 or 6 Moves in proportion with the shape, but cannot be moved

horizontally (X Behavior) or vertically (Y Behavior). If 1, handle

is visible; if 6, it is not visible.

2 or 7 Offsets a constant distance from the shape’s left side (X Behavior)

or bottom (Y Behavior). If 2, handle is visible; if 7, it is not visible.

3 or 8 Offsets a constant distance from the center of the shape. If 3,

handle is visible; if 8, it is not visible.

4 or 9 Offsets a constant distance from the shape’s right side (X Behavior)

or top (Y Behavior). If 4, handle is visible; if 9, it is not visible.

For example, the following figure shows a word balloon with a con-
trol handle whose X Behavior value is 4 and Y Behavior value is 2.

The control handle is If the shape is stretched …or if stretched using the
offset a constant dis- using the handles on the bottom or right handles,
tance from the shape’s left or top, the control the control handle moves
right and bottom. handle stays anchored… to retain the offset.

Related control handle settings

To change display properties for control
handles, you can set these values in the
Miscellaneous section of the ShapeSheet
window:

• Set the NoCtrlHandles cell to TRUE (1)
to prevent control handles from appear-
ing when a user selects a shape.

• Set the UpdateAlignBox cell to TRUE (1)
to force Visio to recalculate a shape’s
alignment box whenever a user moves
the control handle.



8 6 C  H  A  P  T  E  R     4

When a user stretches the word balloon, the mouthpiece stays an-
chored to the same point if the shape is stretched vertically and
maintains its offset from the right side if the shape is stretched hori-
zontally.

Setting a control handle’s anchor point
When a user moves a control handle, a black line appears and
stretches as the user drags the handle. This “rubber band” originates
at the control handle’s anchor point. The rubber band is a visual aid to
help users determine where the control handle is being moved and
what will happen to the shape as a result. You can set the anchor point
at any position in relation to the shape using the X Dynamics and Y
Dynamics cells.

For example, to set a control handle’s anchor point at the bottom of a
shape, enter this formula:

Y Dynamics = Height * 0

The location of the anchor point does not affect how the shape ap-
pears on the page, but only how the rubber band appears as the user
moves the control handle.

To set a control handle’s anchor point outside a shape, describe the
anchor point with respect to the shape’s width and height.

To help users work with your shape, set the anchor point so its posi-
tion reflects its function, as the following figure shows.

A Token Ring shape has multiple control handles anchored to the same point.

As you move a control handle, the rubber
band shows the relationship of the anchor

point to the control handle’s location.



E N H A N C I N G   S H A P E   B E H A V I O R 87

Defining shortcut menu commands

When a user right-clicks a shape on the drawing page, a shortcut
menu appears that includes commands that apply to the selection.
You can define commands that appear on a shape’s shortcut menu
and on the Actions submenu of the Visio Shape menu. You use the
Actions section in the ShapeSheet window to specify a new command
name and define its action for a shape or page.

For example, you could define a menu command in the Actions sec-
tion called Run Program that evaluates this formula:

Action = CALLTHIS("my_prog")

When a user right-clicks your shape, the Run Program command ap-
pears on the shortcut menu. If the command is chosen, Visio
evaluates the formula. In this case, Visio launches MY_PROG.EXE.

NOTE  Action cells, like Event cells, are evaluated only when the action
happens, not when you enter the formula.

To define an Action command for a shape or page:

1. Select a shape, and then choose Show ShapeSheet from the
Window menu.

Or with nothing selected, choose Show ShapeSheet from the
Window menu to display the page’s sheet.

2. If the Actions section is not already present, from the Insert
menu, choose Section. In the Insert Section dialog box, check
Actions, and then click OK.

3. In the Action cell, enter the formula that you want to be evalu-
ated when the user chooses the Action command.

4. In the Menu cell, enter a command name as you want it to appear
on the shortcut menu.

5. Optional. In the Prompt cell, type a descriptive prompt that
appears in the status bar when the Action command is chosen
on the menu.

To test the new command, right-click the shape or page to display its
shortcut menu, and then choose the Action command you defined.

You can customize Visio menus and commands in other ways using
Automation. For details, see Chapter 16, “Customizing the Visio user
interface.”

The Action command

To quickly define common actions for a
shape or page, you can use the Action
command on the ShapeSheet window’s
Edit menu. The command is dimmed unless
you have inserted an Actions section and
selected one of its cells. When you enter
a value for the Menu and Prompt options
in the dialog box, Visio updates the corre-
sponding cells of the Actions section. When
you choose an Action, such as Go To Page,
Visio enters the appropriate formula in the
Action cell.



8 8 C  H  A  P  T  E  R     4

Controlling shape geometry: an example
You can use shortcut menu commands to control shape geometry, so
that users can choose a command to change the shape’s appearance.
For example, you can create a single shape that represents two states:
on or off, open or closed, engaged or disengaged. To do this, you cre-
ate a shape with multiple Geometry sections, called a multishape. In
the Actions section of the multishape, you can define shortcut menu
commands that control the visibility of the Geometry section that
represents one state. To demonstrate, we’ll create an office chair with
arms that can be shown or hidden as the following figure shows.

You can define shortcut commands that appear
when you right-click the multishape.

To create a multishape, you use the Combine command to create one
shape with multiple Geometry sections in its ShapeSheet interface.
Each section defines the path of one of the original shapes. In the Ac-
tions section, you use the SETF function to set the value of a
user-defined cell to true or false, then reference this value in the ap-
propriate Geometry sections to indicate if the chair arms are visible.

To combine shapes into a multishape:

1. Create the shapes you want to use in your multishape.

For example, to create a chair, draw a rectangle or oval for the
seat, one for the chair back, and one for each arm.

2. Select the chair shapes. From the Shape menu, choose Opera-
tions, then Combine.

Visio creates a single shape that contains one Geometry section
for each original shape. The Geometry sections are numbered in
the order in which you selected the shapes.

Choosing the command displays the
geometry of one of the multishape’s

component shapes.

Handy SETF uses

You can use the SETF function in an Event or
Action cell to toggle the value of another
cell between two options or to increment
values in another cell. Because the formula
in an Event or Action cell is evaluated only
when the event occurs, you can write a self-
referential formula using the SETF function
that doesn’t cause a loop. For example, to
toggle the value of cellA depending on the
value of cellB, use the following syntax in an
Event or Actions cell:

SETF("cellA",
IF(cellB=0,1,0))

To increment the value of cell  by one, use
this syntax:

SETF("cell", cell+1)

For details about the syntax of the SETF func-
tion, search online help for “SETF function.”



E N H A N C I N G   S H A P E   B E H A V I O R 89

3. From the Window menu, choose Show ShapeSheet.

4. From the Insert menu, choose Sections. Check User-Defined
Cells and Actions, and then click OK.

5. Type a name for the user-defined cell, such as User.State, and
then enter the value 1.

The initial value is 1, or true, so that the chair arms are visible.

6. Select the first row in the Actions section, then choose Row from
the Insert menu so that there are two rows altogether in the
Actions section.

7. To create the command names and corresponding actions, enter
these formulas:

Action[1] = SETF("User.State",1)

Menu[1] = "Show Arms"

Action[2] = SETF("User.State",0)

Menu[2] = "Hide Arms"

8. In the two Geometry sections that correspond to the arms of the
chair, enter this formula:

Geometryn.NoShow = NOT(User.State)

For example, if the arms of the chair correspond to the Geom-
etry3 and Geometry4 sections, you would enter:

Geometry3.NoShow = NOT(User.State)

Geometry4.NoShow = NOT(User.State)

How the formulas work. The Action cell formula sets the value of
User.State to 1 (TRUE) when the Show Arms command is chosen or 0
(FALSE) when the Hide Arms command is chosen. The Menu cell de-
fines these command names.

To hide and show paths, you enter formulas in the NoShow cell of the
appropriate Geometry section that refer to the value of the User.State
cell. The NoShow cell (which is labeled B1 but referred to as
Geometryn.NoShow) controls whether the path defined by that Ge-
ometry section is shown or hidden. In this case, the arms are both
shown or both hidden, so the same formula is used in the NoShow
cells of the two corresponding Geometry sections.

Action menu names

To control the position of your Action com-
mand in the shortcut menu, you can use a
prefix before the name you type in the Menu
cell. To display your command at the bottom
of the shortcut menu, use this syntax:

= "%Menu item"

To display a divider bar above the com-
mand, use this syntax:

= "_Menu item"

To create a keyboard shortcut for the com-
mand, place an ampersand (&) before the
desired shortcut letter, as follows:

= "&Menu item"



9 0 C  H  A  P  T  E  R     4

The NOT function returns 1 if an expression is false and 0 if true.
When a user chooses Hide Arms, User.State is set to 0 (false). The
NOT function then returns 1 so that the value of the NoShow cell is
true and the path for the corresponding component is hidden.

Dimming the command on the menu. To refine the shape, you can dim
the command that no longer applies to the shape. For example, when
a user chooses the Hide Arms command, the arms are hidden so that
only the Show Arms command needs to be highlighted on the menu.
To do this for the chair shape, you use a logical expression in the Dis-
abled cell of the Actions section, such as the following:

Disabled[1] = User.State=1

Disabled[2] = User.State=0

The result of any formula in the Disabled cell is evaluated as either
true or false. When the Show Arms command is chosen, the value of
User.State is 1, so the expression in the Disabled cell evaluates to true,
and the Show Arms command is dimmed. If the Hide Arms com-
mand is chosen, User.State is 0, so the expression in Disabled[2] cell
is true.

Checking commands on the shortcut menu
When you define several shortcut menu commands for a shape, you
can show which one has been applied to the shape by placing a check
mark beside it on the menu. To do this, you set the Checked cell of the
Actions section to TRUE. You can use a logical expression to check and
uncheck the command under the appropriate conditions, such as:

Checked = User.State=1

In this case, when the value of the user-defined cell User.State is true
(1), the Checked cell evaluates the formula as true, and Visio places a
check mark beside the command name.

The Flowchart Shapes master in Visio uses the Checked cell to tell us-
ers which command is in effect. Like the chair shape in the previous
example, the Flowchart Shapes master has multiple Geometry sec-
tions that are shown or hidden depending on which command on the
shortcut menu has been chosen.



E N H A N C I N G   S H A P E   B E H A V I O R 91

You can place a check mark beside the commands
you define in the Actions section.

For details, see the Flowchart Shapes master on the DVS SmartShapes
template in the \DVS\SHAPE SOLUTIONS folder.

Hiding and showing commands
Instead of dimming a shortcut menu command that is not available,
you can create mutually exclusive commands that appear only under
the appropriate conditions. For example, in the chair shape described
earlier, you could display only one command on the menu at a time:
If the arms are visible, the command on the shortcut menu is Hide
Arms. If the arms are hidden, the command is Show Arms.

In the chair shape, the User.State cell holds the value of the state of
the shape: 1 (true, or show arms) or 0 (false, or hide arms). To create
a command that changes on the shortcut menu, you need only one
row in the Actions section. You write two logical expressions: one in
the Menu cell to determine which command to display based on the
value of User.State, and another in the Action cell to toggle the value
of User.State:

Action = SETF("User.State",NOT (User.State))

Menu = IF(User.State,"Hide Arms","Show Arms")

The SETF function writes the result of the IF statement to the
User.State cell. If the value of User.State is true (1), SETF sets it to 0;
otherwise, the value of User.State is false (0), so SETF sets it to 1.

A user chooses to display the Process,
Decision, Document, or Data shape

geometry by checking the appropriate
command on the shortcut menu.



9 2 C  H  A  P  T  E  R     4

The formulas to show or hide shape geometry remain the same as in
the chair example earlier:

NoShow = NOT(User.State)

Whenever a shape has only two states or attributes that represent an
either/or situation, you can toggle the command names. If the shape
has more than two states or menu commands, users will find it less
confusing if you use the Checked or the Disabled cell to indicate
which commands are available.

Working with custom properties

You can define a custom property to store string, numeric, Boolean,
date or time, duration, currency, fixed list, or varable list data with a
shape, group, master, or page. A custom property is stored as a
ShapeSheet cell whose name and contents you define. You can view
and modify custom properties through the Visio menu commands, as
well as create reports from the information or refer to the values in
other ShapeSheet cells to modify the shape’s behavior.

For example, you can use custom properties to update an inventory
control list. You can create a stencil containing masters that represent
the parts in inventory. For each master, you can define the custom
properties Name, Cost Per Unit, and Quantity. You can set the value
of these properties when you create the shapes, or you can allow the
shapes’ users to enter the name, cost, and quantity for a given part,
even prompting users to do so.

Custom properties for an inventory control list

Shape with custom properties

The value typed here is the value
of the Prop.Cost cell.



E N H A N C I N G   S H A P E   B E H A V I O R 93

To transfer the custom property values to an external source, such as
an inventory control list, you could write an intermediary program to
get the data and write it to a spreadsheet or database. You can also set
the value of a custom property from an external source. For details
about using Automation to retrieve and set custom property values,
see Chapter 14, “Working with drawings and shapes.”

Defining custom properties
You can define custom properties for a single shape or a page by add-
ing the Custom Properties section to its ShapeSheet interface. If
you’re editing a stencil, a more efficient method is to define custom
properties for the stencil’s masters so that their instances also contain
the properties. With the Custom Properties Editor, you can define
custom properties for a master on a local or standalone stencil.

To add custom properties to a shape or page:

1. Select the shape you want, or click an empty portion of the
drawing page, then choose Show ShapeSheet from the Window
menu.

2. If the Custom Properties section is not already present, from the
Insert menu, choose Sections. In the Insert Sections dialog box,
check Custom Properties, and then click OK.

3. In the Custom Properties section, select the Row label
Prop.Row_1, which appears in red text. In the formula bar, type a
descriptive name.

For example, type Unit_Cost to create the custom property
Prop.Unit_Cost. The name that appears in the Row label is the
cell name for the Value cell in that row. Use this name (for
example, Prop.Unit_Cost) in cell references.

4. In the Label cell, type the label that appears to users in the
Custom Properties dialog box for this property.

For example, type Cost Per Unit. In the ShapeSheet cell, Visio
automatically encloses the string in quotation marks.

5. In the Prompt cell, type descriptive or instructional text that
appears to users in the Custom Properties dialog box when the
property is selected.

For example, type Enter the cost per unit for the part. Visio
automatically encloses the string in quotation marks.

Data types in earlier versions of Visio

Versions of Visio products earlier than 4.5
do not support the custom property types
5 (date and time), 6 (duration), and 7 (cur-
rency). If you open a drawing that includes
these data types in an earlier version of a
Visio product, the custom property values
are evaluated as strings.



9 4 C  H  A  P  T  E  R     4

6. In the Type and Format cells, enter a data type and format for
your custom property’s value.

For details, see the following table.

7. Optional. Set the Invisible cell to a nonzero number (TRUE) to
prevent the custom property from appearing in the Custom
Properties dialog box. Set the Ask cell to a nonzero number
(TRUE) to display the Custom Properties dialog box whenever
an instance of the shape is created.

To see the custom property you have defined, select the shape in
the drawing page or cancel all selections, if you want to view the
page’s custom properties. Then choose Custom Properties from
the Shape menu.

Custom property data types and formats

Type ShapeSheet formula Description

String Type = 0 This is the default. Use a valid format picture* in the Format

Format = "<Picture>" cell to format strings as number-unit pairs, dates, times, etc.

Fixed list Type = 1 Displays the list items in a drop-down list box in the Custom

Format = "Item 1;Item 2" Properties dialog box. Specify the list items in the Format cell.

Users can select only one item from the list.

Number Type = 2 Use a format picture* in the Format cell to specify units of

Format = "<picture>" measure and other number formats.

Boolean Type = 3 Displays FALSE and TRUE as items users can select from a drop-

down combo box in the Custom Properties dialog box.

Variable list Type = 4 Displays the list items in a drop-down combo box in the

Format = "Item 1;Item 2" Custom Properties dialog box. Specify the list items in the

Format cell. Users can select a list item or enter a new item.

Date or time Type = 5 Use a format picture* in the Format cell to specify days,

Format = "<picture>" months, years, hours, minutes, seconds, or other date formats;

time formats; or combination date and time formats.

Duration Type = 6 Use a format picture* in the Format cell to specify elapsed time

Format = "<picture>" in hours, days, weeks, months, or other duration formats.

Currency Type = 7 Use a format picture* in the Format cell to specify currency

Format = "<picture>" formats.

* For example, Format = "# #/10 UU" formats the number 10.92 cm as "10 9/10 CENTIMETERS" (specifying the use of  “10” in the denominator
and the uppercase, long form of the units). For details about valid format pictures, see “Formatting strings and text output” in Chapter
6,“Designing text behavior.” Or search online Help for “format function.”



E N H A N C I N G   S H A P E   B E H A V I O R 95

To add custom properties to a master:

1. Open a standalone stencil as Original, or display the local stencil
by choosing Show Master Shapes from the Window menu.

2. From the Shape menu, choose Custom Properties.

Visio asks if you want to add properties to the masters. Click Yes.

3. Follow the instructions onscreen to identify the masters you want
to edit, then click Next to add the custom properties.

The editor adds the Custom Properties section to the selected
master and sets the value of the Label, Prompt, and other cells
based on your selections.

To see the custom property you have defined, select the master in
the stencil, then choose Custom Properties from the Shape menu.

Adding a Properties command to a shortcut menu
You can add a Properties command to a shape’s shortcut menu that
displays the Visio Custom Properties dialog box. To do this, you write
a formula that uses the DOCMD function, which takes as its argument
a Visio command number constant. These constants are declared in
the Visio type library and prefixed with visCmd.

To add a Properties command that displays the Custom Properties
dialog box, enter the following in a shape’s Actions section:

Action = DOCMD(1312)

Menu = "Properties"

For best results, use DOCMD only for nondestructive commands that
do not require that particular data be available to succeed. When the
user chooses a command from a menu, Visio provides certain safe-
guards to make sure the command is appropriate. For example, a user
cannot save a document if no document is open, or quit Visio with
unsaved changes without first being prompted to save his or her
work. The DOCMD function provides no such safeguards—Visio ex-
ecutes the command with whatever data happens to be in memory in
the locations referenced by the command, whether that data is appro-
priate or not. This can produce indeterminate results at best, and
damage files or cause data to be lost.

Protecting custom properties

You cannot use the GUARD function to
protect the value in the Value cell of the
Custom Properties section. You can, how-
ever, create a custom property that is not
displayed in the Custom Properties dialog
box. To hide a custom property, set its Invis-
ible cell to TRUE (1). You can still work with
the custom property in the ShapeSheet
window or from a program.



9 6 C  H  A  P  T  E  R     4

Using custom properties with a database
After you have defined custom properties for a shape, you can link
the data to a database. The Database Wizard can automate this pro-
cess for you. It links the values of ShapeSheet cells in the Custom
Properties section to a database created in an application compliant
with the Open Database Connectivity (ODBC) standard. If you revise
the database, you can refresh the values in the ShapeSheet cells to re-
flect the revisions. If you change the value of the custom properties in
Visio, you can update the database to reflect the changes.

When it links a shape to a database, the Database Wizard adds the
Custom Properties section and the User-Defined Cells section to the
shape. The latter section is where the wizard stores information about
the primary key for the database, the database fields that are linked to
ShapeSheet cells, and the last valid data retrieved from the database.

To run this wizard, from the Tools menu, choose Macro, then Data-
base, then Database Wizard. For details about options, click the More
Info button in the wizard. Or search online help for “database wizard.”

Assigning shapes and masters to layer

You can assign shapes and masters to layers, which are named catego-
ries that help users organize shapes in a drawing. When a user drags a
master onto the drawing page, the instance inherits the layer infor-
mation from the master. If the instance is assigned to a layer that
doesn’t exist on the page, Visio automatically creates the layer. When
shapes include layer assignments, users can highlight shapes by layer
in different colors while working in a drawing, print shapes by layer,
and hide all shapes on a layer.

For example, if you’re creating shapes for an office plan stencil, you
can assign the wall, door, and window shapes to one layer, electrical
outlet shapes to another layer, and furniture shapes to a third layer.
You can also lock layers to prevent the shapes on the locked layer
from being edited. A shape can belong to more than one layer.

Stencils and templates with layers

If you intend to save a document as a new
stencil or template, you can save space by
removing all layers from the drawing page
that have no shapes assigned to them. To do
this, check Remove Unreferenced Layers in
the Layer Properties dialog box.



E N H A N C I N G   S H A P E   B E H A V I O R 97

Layers belong to pages; every page has a list of layers associated with
the page. Shapes appear on layers and can belong to more than one
layer. By hiding or locking different layers on a page, you can control
which shapes are visible or can be edited. You use the Layer Properties
command on the View menu to control the behavior of each layer
and also the behavior of the shapes associated with that layer.

To assign a master to a layer:

1. Double-click the master in the stencil to open it in the master
drawing window.

For details about editing stencils, see “Opening a stencil” in
Chapter 2, “Tools for creating solutions.”

2. Select the master, and then from the Format menu, choose Layer.

3. In the Layer dialog box, select the layer you want the shape to
belong to, and then click OK.

To assign a shape to more than one layer, press the Ctrl key to
select multiple layers.

If no layers currently exist, Visio displays the New Layer dialog
box. Type a name for the new layer, and then click OK to display
the Layer dialog box, where the new layer appears in the list.

When you assign a shape or a master to a layer, the Layer Membership
section of the ShapeSheet window shows the layer assignment as an
index to the list of layers on the page. The layer index corresponds to
an entry in the Layer dialog box, which corresponds to a row in the
Layer Membership section. The first layer created is layer 0, the sec-
ond is layer 1, and so forth. Deleting layer 0 does not increment the
other layer numbers. Layers are listed in alphabetical order in the dia-
log box. If a shape belongs to more than one layer, each layer index is
separated by a semicolon.

For details about working with layers on the drawing page, search
online help for “layering shapes” and “layers on pages.”

Layers, pages, and backgrounds

In other graphics programs, the term layers
often refers to the stacking order of objects
on the page. In Visio products, layers orga-
nize shapes into categories called layers,
while pages and backgrounds can be used
like transparencies to stack the shapes that
appear on them. For example, you can draw
a title block on a background so that it
appears on all foreground pages to which
the background is assigned.

Because layers belong to the page, each
page in a drawing file can have a different
set of layers. Both foreground and back-
ground pages can have layers to organize
the shapes that appear on them. A shape
can belong to any and all layers on the
current page. If you copy a shape with layer
membership data to another page in the
drawing, the associated layers are added to
the destination page, if it doesn’t already
have them.





Topics in this chapter

Understanding 1-D and 2-D shapes ............................................................ 100

Creating routable and other 1-D connectors .............................................. 103

Controlling how shapes connect ................................................................. 109

5
Making shapes connect:
1-D shapes and glue

Should a shape behave like a box or a line? When you’re designing a
shape, that’s one of the first questions you need to ask. A shape that
behaves like a box—that is, a 2-D shape—can be stretched vertically
or horizontally. A shape that behaves like a line—a 1-D shape—can
be stretched and rotated in one operation. You can use 1-D shapes to
join other shapes together, and in this capacity they are often called
connectors. The attribute of a connector that causes it to stay joined to
another shape is called glue.

This chapter describes how to create different types of 1-D shapes.
It explains the differences between 1-D and 2-D shapes, and how to
work with the glue that holds them together.



1 0 0 C  H  A  P  T  E  R    5

Drawing 1-D shapes

The easiest way to create a 1-D shape is of-
ten to draw the shape roughly as a 2-D
shape, convert it to 1-D, and then adjust the
vertices and enter smart ShapeSheet for-
mulas. You can save time and effort when
you initially draw the shape by orienting it
horizontally—that is, dragging left to right or
right to left in the direction you want the line
to go. Visio places 1-D endpoints on the left
and right side of the shape you draw, so a
horizontally drawn shape will be closer to
what you want after it is converted to 1-D.

Understanding 1-D and 2-D shapes

When you want a shape for which the size or length of the line is less
important than the connection it represents, create a 1-D shape. Be-
cause 1-D shapes are often used to connect other shapes, they are
called connectors. For example, in a flowchart, circuit diagram, or
mechanical illustration, 1-D shapes often connect other components.
However, not all 1-D shapes are connectors. Some function as lines,
such as callouts or dimension lines, or are simply easier to work with
as 1-D shapes, such as a wedge of a pie chart.

Most shapes when you first draw them are 2-D. Their width-height
boxes have eight handles for resizing. When you draw a single arc or
line, however, the result is a 1-D shape that has handles for begin and
end points and for height adjustment. Not only do 1-D and 2-D
shapes look different, they act differently on the drawing page.

Position of selection handles on Position of selection handles on
a 1-D shape a 2-D shape

A shape that looks like a box can act like a line, because you can con-
vert a 2-D shape to 1-D and vice versa. Converting a shape in this way
dramatically changes its ShapeSheet interface.

When a user drags a 1-D shape onto the drawing page, its alignment
box appears as a straight line, rather than as an outline of a box as for
2-D shapes. This can make the shape easier for users to align, as with
a 1-D wall shape in a space plan.

Two of the 1-D shape’s handles have a special purpose. The starting
vertex of a 1-D shape is its begin point, and the handle that represents
the end of the line formed by the shape is the end point.

Begin point

End point



M A K I N G   S H A P E S   C O N N E C T :   1 - D   S H A P E S   A N D   G L U E 101

You can glue the begin or end point of a 1-D shape to a guide, guide
point, connection point, shape vertex, or handle. If you glue one end,
the other end stays anchored on the page, and the 1-D shape stretches
as the glued end moves with the shape it is glued to.

Converting 1-D and 2-D shapes
A key difference between a 1-D and 2-D shape is whether its
ShapeSheet interface includes the 1-D Endpoints section. If so, the
shape is 1-D. Converting a 2-D shape to 1-D adds this section and de-
fault formulas. Converting a 1-D shape to 2-D removes it, regardless
of any protection (including GUARD functions) that you may have set.

When you convert a 2-D shape to 1-D, the Alignment section is de-
leted, and the formulas in the Shape Transform section’s Width,
Angle, PinX, and PinY cells are replaced with default 1-D formulas.
Converting a shape does not remove its connection points, but its
connections to other shapes or guides are broken.

To convert a shape from 1-D to 2-D or 2-D to 1-D:

1. Select the shape.

2. From the Format menu, choose Behavior.

3. Under Interaction Style, select Line (1-Dimensional) to specify a
1-D shape. Select Box (2-Dimensional) to specify a 2-D shape.

4. Click OK.

Visio modifies the shape and adjusts the alignment box according
to the behavior chosen.

You can use the LOC and PAR functions with the PNT function to
convert the coordinates of a point on one shape into the local
coordinates of another shape, or into the coordinate system of
the shape’s parent.

When both of those points are in local coordinates, use the LOC
function. For example, use the LOC function to express the vertex
in one shape in terms of the vertex in another shape. For details,
see the Block shape in the SOLUTIONS stencil in \VISIO\DVS\SHAPE
SOLUTIONS. It uses the LOC function to express the position of
another shape in local coordinates. The result of this conversion
is used to position a control handle.

Use the PAR function when you want to express the endpoint or pin
location of one shape, which is shown in parent coordinates, in
terms of a vertex in another shape, which is shown in that shape’s
local coordinate system. For example, if you glue the endpoint of a
connector to a connection point on a shape, Visio expresses the
coordinates of the glued endpoint in terms of the connection point
using the PAR function. To see this, display the ShapeSheet window
for a glued connector and look at the formula in the EndX and EndY
cells.

Functions that convert coordinates



1 0 2 C  H  A  P  T  E  R    5

1-D shape gallery
The 1-D shapes shown in the following figure have custom formulas
that create smart behavior. For example, the ShapeSheet formulas for
the S-connector keep the connector right side up. As its endpoints are
moved, the shape resizes in a way that keeps it upright by stretching
its horizontal or vertical segments. Smart formulas for the valve shape
give it height-based resizing behavior. As a user moves an endpoint,
the line stretches, but the middle details remain the same size. If a
user increases the shape’s height, the middle details resize propor-
tionately, but the line does not change.

25 %

1 
1/

8"

Examples of 1-D shapes

The arrow shape shown in the figure can also be a 2-D shape. When
should an arrow act like a line and when should it behave like a box?
If the arrow is intended to be used in an up-down, left-right manner
only, then making it 2-D can make horizontal and vertical position-
ing easier. In addition, 2-D shapes cannot be rotated without the use
of the rotation tool, whereas it is very easy to change the angle of a
1-D shape accidentally by nudging one of its endpoints. However, to
allow the arrow to connect other shapes through the Visio user inter-
face (as opposed to an add-on), it must be 1-D.

Not all 1-D shapes require special formulas to be useful. Because a
1-D shape looks like a line as it is being dragged, it can be faster to po-
sition in a drawing. Consider using 1-D shapes whenever you want to
create masters that your users will align precisely in a drawing. For
example, a text callout or annotation shape is easier to position accu-
rately if users can see where the line will point.

S-connector

Drip line BusVertical
dimension

line

Arrow

Diaphragm valve

Pie wedge
Wall



M A K I N G   S H A P E S   C O N N E C T :   1 - D   S H A P E S   A N D   G L U E 103

Creating routable and other 1-D connectors

If you are designing solutions for connected diagrams, you must de-
cide whether to use the connector tools built into Visio or design your
own connectors. Connected diagrams include everything from flow-
charts to piping diagrams. When your users create such diagrams,
you can rely on the automatic routing behavior that Visio includes
with the dynamic connector tool (on the Standard toolbar) and the
Connect Shapes command (on the Tools menu and Shape toolbar),
provided that you design your shapes to work with them. In some
cases, however, you may want to create your own 1-D connectors instead.

The dynamic connector tool and Connect Shapes command create
routable connectors between placeable shapes. A routable connector is
a 1-D shape that draws a path around other shapes rather than cross-
ing over them on the drawing page. A placeable shape is a 2-D shape
that the routable connector works with. Whether shapes are placeable
and routable in a drawing determines how Visio reacts when changes
occur, such as when shapes are added, deleted, resized and reposi-
tioned. In response to such changes, Visio automatically repositions
shapes that are placeable and reroutes shapes that are routable.

Routable connectors can save users lots of time when they revise
complex connected diagrams. In some cases, however, you may want
a connector with more predictable behavior—that is, one that does
not automatically reroute. For example, if your drawing type requires
connecting lines that always form a 90-degree angle or that connect
shapes with an arc or spline, you can create your own 1-D connector
that is not routable.

Creating routable connectors
You can create a routable connector from any 1-D line by setting its
ObjType cell in the Miscellaneous section to 2. To control the path
taken by a routable connector, you set its behavior, which corresponds
to the value of the ObjBehavior cell of the Miscellaneous section. By
default, the value of this cell is No Formula, which evaluates to 0,
meaning the connector uses the behavior set for the page.

The Lay Out Shapes command (on the Tools menu) provides two
routing behaviors for the page, Right Angle and Flowchart, but you
can specify other behaviors. For example, you can create a routable
connector that always creates a tree diagram in north-south orienta-
tion by setting its ObjBehavior cell to 7. To set this behavior as the
page default, change the User.visRoutingStyle cell to 7 in the page’s

Dynamic versus universal connector

By default, the shapes created by using the
connector tool, the Connect Shapes com-
mand, or the Dynamic Connector shape are
instances of the dynamic connector. The
dynamic connector is routable, but users
can manually edit its position as well. When
the dynamic connector crosses over an-
other routable connector on a drawing
page, it can “jump” over the other line with
a U-shaped bump.

The dynamic connector supercedes the
functionality provided in previous versions
of Visio products by the universal connec-
tor. You can still open drawings that contain
the universal connector; the shape is not
converted to a dynamic connector. To use
the universal connector shape, open the
Connectors stencil in the Visio Extras folder.

You can open a drawing containing the dy-
namic connector in version 4.0. Visio treats
the connector like a 1-D shape and ignores
its automatic routing capabilities. If you edit
the connector in version 4.0, then open the
drawing in version 5.0, the dynamic connec-
tor works as expected—its routing behavior
is retained.



1 0 4 C  H  A  P  T  E  R    5

User-Defined Cells section. For details about other settings for the
ObjBehavior cell, search online help for “miscellaneous section.”

The following table provides valid values for the ObjType cell.

Values for a shape’s ObjType cell

Value Meaning Automation constant

0 Visio decides based on visLOFlagsVisDecides

the drawing context

1 Placeable visLOFlagsPlaceable

2 Routable visLOFlagsRoutable

4 Not placeable, not routable visLOFlagsDont

When you create a new 2-D shape, by default Visio sets its ObjType to
No Formula, which evalutes to 0, meaning that Visio will determine
whether the shape can be placeable depending on its context. For ex-
ample, if you draw a simple rectangle, the value of its ObjType cell is
0 by default. If you then use the Connect Shapes command or the dy-
namic connector tool to connect the rectangle to another shape, Visio
decides that the rectangle can be placeable, and sets the rectangle’s
ObjType cell to 1 (placeable). You can also create a placeable 1-D
shape (via the ShapeSheet window only), which can be useful when
the shape is not a connector and will be used in a drawing with auto-
matic layout. Setting a 2-D shape to routable, however, has no effect
on its behavior.

When you create a template for a diagram that uses routable connec-
tors and placeable shapes, you can customize the default values that
Visio uses to route and place shapes. By specifying values with the Lay
Out Shapes command on the Tools menu, you define the default val-
ues for the page. To set these defaults without affecting the layout on
the current drawing page, be sure to check Set Layout Properties Only
in the Layout Shapes dialog box. Users can edit shapes on the page to
override the page settings; however, when users create or add place-
able shapes, by default, the settings for the page will be used.

For details about creating diagrams that use routable connectors and
placeable shapes, see “Working with connections” in Using Visio
Products or search online help for “automatic layout.”

Nonroutable 1-D connectors

If you are creating shapes that you specifi-
cally do not want to work with routable
connectors, set their ObjType cell to 4. Con-
nectors can glue to connection points on
the shape, but in a diagram that contains
placeable shapes and routable connectors,
the nonplaceable shape will be ignored—
that is, routing lines will behave as if the
shape does not exist.



M A K I N G   S H A P E S   C O N N E C T :   1 - D   S H A P E S   A N D   G L U E 105

Creating an angled connector: an example
When your solution calls for a connector with behavior that you can
control programmatically, you can create one that does not automati-
cally route. With ShapeSheet formulas, you can control how a
connector extends from its begin point to its end point. For example,
the following figure shows an angled connector with two right-angle
bends, which is useful for creating hierarchical diagrams such as or-
ganization charts. The custom formulas for this connector are
included in this section as a demonstration of the type of formulas
you need to control 1-D shapes. You can find other 1-D connectors in
the Connectors stencil in the Visio Extras folder.

A

B

C

D

The four different ways an angled connector can bend when a user moves it.

With its two bends in the middle, the angled connector has two verti-
ces that require custom formulas. To calculate the coordinates of the
first vertex after the begin point, remember that its x-coordinate is
the same as that of the begin point. The y-coordinate is 0.25 in. if the
shape is drawn from the bottom up. If it is drawn from the top down,
its y-coordinate is calculated as:

= Height – 0.25 inches

The x-coordinate for the next vertex is the same as the x-coordinate
for the last LineTo row, which specifies the shape’s end point and so
is always Width or 0. Its y-coordinate is the same as the preceding
vertex.

Adding a connector to a shape

You can use the SmartShape Wizard to add
a connector to an existing shape. The result
is a group consisting of the original shape
and a line with a control handle that can
glue to another shape. For example, you
could add a connector to a text-only shape,
then glue the line to a part you want to an-
notate in a drawing.

By using the wizard, you can create built-in
connectors with a variety of connecting be-
havior, such as top to bottom, side to side,
and so on. To start the wizard, from theTools
menu, choose Macro, choose Visio Extras,
and then choose SmartShape Wizard.

BeginY <= EndY

The connector always bends .25"
(vertically) from the begin point.

BeginX <= EndX

BeginX > EndX

BeginY > EndY



1 0 6 C  H  A  P  T  E  R    5

To create an angled connector:

1. Select the line tool and draw a straight, 1-D line from left to right.

2. From the Window menu, choose Show ShapeSheet.

3. Type the following formulas in the Shape Transform section:

Width = GUARD(ABS(EndX – BeginX))

Height = GUARD(ABS(EndY – BeginY))

Angle = GUARD(0 deg.)

4. From the Insert menu, choose Section, and then check User-
Defined Cells.

5. In the User-Defined Cells section, type a name for the cell, such
as yOffset, and then type 0.25 in. in the Value cell.

6. Select the last row in the Geometry section, and then from the
Insert menu, choose Row After. Repeat to add two rows total.

Each row corresponds to a vertex of the shape.

7. Type the formulas shown in the following table.

Custom formulas in the Geometry section

Row X Y

1 Start = IF(BeginX <= EndX,0,Width) = IF(BeginY <= EndY,0,Height)

2 LineTo = Geometry1.X1 = IF(BeginY <= EndY, User.yOffset,

 Height – User.yOffset)

3 LineTo = Geometry1.X4 = Geometry1.Y2

4 LineTo = IF(BeginX <= EndX,Width,0) = IF(BeginY <= EndY,Height,0)

8. In the Protection section, set the LockHeight cell and
LockVtxEdit cell to 1.

Setting LockVtxEdit protects the geometry formulas by prevent-
ing users from editing the shape vertices. Setting LockHeight
protects the height formula and removes the top and bottom
handles, which aren’t needed for a connector.

Adding a control handle

If you want users to be able to change the
position of the bend in the angled connector
by moving a control handle, you can link
User.YOffset to a control handle and lock
the handle’s x-position so that it moves only
in the y direction. For an example of this be-
havior, see the Bottom To Top Variable
connector in the Flowchart - Basic stencil.
For details about control handles, see Chap-
ter 4, “Enhancing shape behavior.”



M A K I N G   S H A P E S   C O N N E C T :   1 - D   S H A P E S   A N D   G L U E 107

Creating a height-based
11111-D shape: another example
Some shapes, such as the 1-D pipe and valve shape in the following
figure, can stretch between two points to connect other shapes. You
can create this type of 1-D shape as a single shape with multiple
geometry components that have different resizing behaviors. In a 1-D
shape, the endpoints control the shape’s width. In the pipe and valve
shape, when a user drags an endpoint, only the line component
stretches. When a user drags a top or bottom handle, only the valve
component resizes, and it does so in a way that maintains its aspect ratio.

Using default formulas Using height-based formulas

You use a height-based formula to define the width of the valve com-
ponent in terms of the shape’s height. To create this connector as a
single shape, you draw two line segments at either end of a valve
shape, then use the Combine command.

To maintain the valve’s proportions when the shape is resized, define
the x-coordinates of the valve’s vertices in relation to the center and
height of the shape, as the following figure shows. Doing so also
serves to keep the valve centered in the width-height box. This ap-
proach requires that you set formulas in the X cell of the Geometry
section.

x

y
➊

➋

➌

➍

➎

➏ ➐

Height-based formula for a 1-D shape with multiple geometry components

When stretched in either direction,
the valve becomes distorted.

When stretched hori-
zontally, only the pipe
increases in length.

When stretched verti-
cally, the valve grows
proportionately.

Pipe

Valve

Width * 0.5 – Height * 1

Width * 0.5

Width * 0.5 + Height * 1

Height

Width



1 0 8 C  H  A  P  T  E  R    5

To control the valve portion of the shape, open the ShapeSheet win-
dow for the combined shape and type the formulas shown below in
the Geometry1 section. To create this shape in a way that ensures
your Geometry rows match the figures and tables shown here, see the
following sidebar, “Creating a 1-D shape by combining multiple
shapes.”

Custom formulas in the Geometry11111 section

Row X Y

➊  Start = Width*0.5 – Height*1 = Height*1

➋  LineTo = Geometry1.X1 = Height*0

➌  LineTo = Width*0.5 + Height*1 = Height*1

➍  LineTo = Geometry1.X3 = Height*0

➎  LineTo = Geometry1.X1 = Geometry1.Y1

To control the point where the left pipe segment meets the valve (ver-
tex 6 in the preceding figure), type this formula:

Geometry2.X2 = Geometry1.X1

To control the point where the right pipe segment meets the valve
(vertex 7 in the preceding figure), type this formula:

Geometry3.X1 = Geometry1.X3

For example, to create the pipe and valve shape, select the line
tool and draw a straight line from left to right to form the left seg-
ment of the pipe. Use the line tool to draw the valve, starting at
point 1 as shown in the preceding figure. Use the line tool to draw
the right segment of the pipe from left to right.

Now select the shapes in this order: first the valve, then the left
line, and then the right line. From the Shape menu, choose Opera-
tions, and then choose Combine. This results in a single shape
with three Geometry sections numbered in the same order as the
table in this section. You shouldn’t add any custom formulas to the
component shapes before you combine them, because the Com-
bine command removes them anyway. To make the resulting
shape 1-D, from the Format menu, choose Behavior. Check Line
(1-Dimensional), then click OK.

When you draw 1-D shapes such as the pipe and valve shape,
you often draw several shapes, and then either group or combine
them. Using the Combine command results in a more efficient
shape. If the component shapes all have the same formatting,
you don’t need to group them, which adds a group sheet. How-
ever, you need to make sure that the endpoints of the resulting
1-D shape are in the right place.

Visio always places the begin point on the left end of a 1-D shape
and the end point on the right. If you draw a shape top to bottom,
and then convert it to 1-D, the endpoints may not be where you
want them. So draw the component parts from left to right. You
also need to select them in the right order before using the
Combine command so that the resulting shape looks the way
you expect.

Creating a 1-D shape by combining multiple shapes



M A K I N G   S H A P E S   C O N N E C T :   1 - D   S H A P E S   A N D   G L U E 109

Controlling how shapes connect

The behavior that allows part of a shape to stay connected to another
shape is called glue. You can specify the part of a shape to which an-
other shape can be glued by defining a connection point. You can glue
the endpoints of a 1-D shape to a guide, guide point, shape vertex, or
selection handle. Visio automatically creates a connection point when
you glue a 1-D shape to a 2-D shape’s vertices or handles. When an
endpoint of a 1-D shape is glued to a 2-D shape, you can move the
2-D shape and the glued endpoint stays attached, stretching the 1-D
shape as the unglued endpoint stays anchored.

You can define different types of glue behavior. When the endpoint of
a 1-D shape remains fixed to a particular connection point, it is said
to use static glue. If the 1-D shape’s endpoint “walks” from connec-
tion point to connection point to improve the visibility of the
connection as the other shape moves, it is said to use dynamic glue.
This is how routable connectors glue placeable shapes. You can think
of dynamic glue as shape-to-shape glue: It connects two shapes be-
tween the shortest route, simplifying a drawing. Static glue is
point-to-point glue: The connection is always between the same two
points, no matter how the shapes move.

Although 1-D shapes are usually used to connect 2-D shapes, in some
cases you can glue 2-D shapes to other shapes. When working with
2-D shapes, you can glue:

• An entire side of a shape to a guide or a guide point.

• An edge of the alignment box to a guide.

• A selection handle to a guide point.

• A control handle to a connection point.

Defining a shape’s glue behavior
You can choose the type of glue behavior a 1-D connector shape uses,
static or dynamic. The default behavior for a shape you draw or any
shape that is not placeable or routable is static glue.

Setting a template’s glue behavior

When you are designing a template, you
can choose which glue behaviors to enable
in your template’s drawing pages. From the
Tools menu, choose Snap & Glue to specify
the parts of a shape to which another shape
can be glued on that page. Most Visio tem-
plates enable users to glue 1-D shapes only
to guides, guide points, and connection
points. In the Snap & Glue dialog box, you
can check the Shape Handles and Shape
Vertices options so that users can glue 1-D
shapes to these points as well. Visio auto-
matically creates a connection point at the
glued handle or vertex.

Although you can set the default gluing
behavior for your template’s drawing pages,
your users can change that default by
choosing other options in the Snap & Glue
dialog box.



1 1 0 C  H  A  P  T  E  R    5

A connector defined to use dynamic glue can create a connection with static or
dynamic glue.

When you create a connector, you can set it to use dynamic glue so
that its endpoints can move from one connection point to another as
a user moves the shapes the connector is glued to. Visio redraws the
connector so it connects the shapes at their two closest connection
points. However, users must press the Ctrl key as they drag the con-
nector to any shape other than a placeable shape in order to activate
the dynamic glue. If they don’t press Ctrl, the connector uses static
glue. If the connector’s endpoint is glued with dynamic glue, its selec-
tion handle is solid red. If glued with static glue, the selection handle
displays the default begin point ( ) or end point ( ) symbols in
dark red.

To define glue for a connector:

1. Select the shape, then from the Window menu, choose Show
ShapeSheet.

2. If the Glue Info section is not displayed, from the View menu,
choose Sections. In the Sections dialog box, check Glue Info,
and then click OK.

3. In the Glue Info section, type 0 in the GlueType cell to specify
static glue, or type 3 to specify dynamic glue.

By default, dynamic glue connects via the shortest route between two
connection points or midshape selection handles. You can set a pref-
erence so that a shape with dynamic glue walks to a side, top, or
bottom connection point when the glued endpoint is moved. To do
this, set the WalkPreference cell. For details about WalkPreference set-
tings, search online help for “WalkPreference.” Routable connectors
ignore the setting of the WalkPreference cell; their routing behavior is
controlled by the value of the ObjBehavior cell.

Dynamic glue formulas

When a user glues a 1-D connector with
dynamic glue to another shape, Visio
generates a formula that refers to the
EventXFMod cell of the other shape. When
that shape is changed, Visio recalculates
any formula that refers to its EventXFMod
cell, including the formula in the BegTrigger
and EndTrigger cells. These two cells con-
tain formulas generated for a 1-D shape by
Visio when the 1-D shape is glued to other
shapes. Other ShapeSheet formulas for the
1-D connector refer to the BegTrigger and
EndTrigger cells and move the begin or end
point of the connector or alter its shape as
needed.

Drag an endpoint to connect
with static glue.

Press the Ctrl key and drag an endpoint
to connect with dynamic glue.



M A K I N G   S H A P E S   C O N N E C T :   1 - D   S H A P E S   A N D   G L U E 111

Adding connection points
When you design a shape, you indicate the location where it can be
glued by adding connection points to it. As you create masters, con-
sider which points users will most likely need to glue another shape
to, and avoid creating additional points, because they can make a
shape respond less efficiently. Visio automatically creates a connec-
tion point at the vertex or selection handle of a shape when a
connector is glued at that position, so you must manually add con-
nection points only when you need one in a nonstandard location.

You create a connection point using the connection point tool on the
toolbar or by adding the Connection Points section in the ShapeSheet
window.

To create a connection point:

1. Select the shape.

2. Select the connection point tool, hold down the Ctrl key, and
then click where you want to add a connection point.

NOTE   The connection point tool always adds a connection point to
the selected shape. Before using this tool, you must always select the
shape to which you want to add the connection point.

When you add a connection point, Visio adds the Connection Points
section to the ShapeSheet window with a row describing the point’s
x- and y-local coordinates. By changing the formulas for a connection
point’s coordinates, you can control how the location of the connec-
tion point changes when a shape is resized.

You can also store data in extra cells of the Connection Points section.
To do this, right-click a row, then choose Change Row Type. The
unitless cells, A, B, C, and D, become available for you to use for
scratch formulas associated with your connection points.

Connection point names. You can rename the Connections Points row
to create a more meaningful reference for the value contained in the
X or Y cell of the same row. The cell name you enter must be unique
within the section. When you create a name for one cell in this sec-
tion, Visio names all the cells in the section with the default name,
Connections.Row_n. If no rows in the section are named, the name
cell is blank.



1 1 2 C  H  A  P  T  E  R    5

For example, to rename the cell for the first row, type Custom in the
formula bar to create the cell name Connections.Custom. Visio cre-
ates the name Connections.Row_2 for the cell in the second row. To
refer to the X cell of the first row, use Connections.Custom.X or
Connections.X1. To refer to the Y cell of the first row, use
Connections.Custom.Y1 or Connections.Y1. To refer to the X cell of
the second row, use Connections.Row_2.X or Connections.X2, and to
refer to its Y cell, use Connections.Row_2.Y or Connections.Y2.

Connection points in a group. If your master is a group, all the connec-
tion points should be added to the group, because only the
connection points on the topmost group are visible in the drawing
window. Unless you expect users to ungroup your shape, you should
delete any connection points in the member shapes; they simply take
up space.

If you want a connection point to refer to a shape in the group, you
can either calculate the appropriate location in the referring formula,
or use a reference to another shape within the group to refer to that
shape’s geomery. If you refer to anothershape, you may need to adjust
for that shape’s local coordinate system.

Connection points on a routable connector. You can add connection
points to any shape, including a routable connector. As you move the
connector, the connection points maintain their position along the
path of the connector with respect to the endpoints. For example, if
you place a connection point in the middle of a straight connector,
which is then routed around shapes, the connection point remains in
the middle as measured along the path of the connector. Because of
this behavior, it’s easiest to precisely position connection points when
you add them to a straight connector.

Using named connection points

Named connection point rows are not com-
patible with versions of Visio earlier than
5.0. When saving a Visio 5.0 drawing file to
an older format, references to named con-
nection point rows are converted to indexed
references, and the row names are lost.



Topics in this chapter

About text in shapes ................................................................................... 114

Protecting text formulas ............................................................................. 117

Controlling the text block’s position ........................................................... 118

Resizing shapes with text ........................................................................... 120

Controlling text rotation .............................................................................. 124

Constraining text block size: some examples ............................................. 126

Controlling text in a group .......................................................................... 130

Displaying and formatting formula results ................................................. 131

Formatting strings and text output ............................................................. 133

Testing text block formulas ......................................................................... 135

6
Designing
text behavior

By default, users can add text to any Visio shape. When you design
shapes, it’s important to consider the position and appearance of
the text block attached to a shape—even if it’s a shape you think
no one will ever add text to. Should the text rotate with the shape?
Should the text resize with the shape? Should the shape be allowed to
have text at all?

This chapter describes the mechanics of changing a shape’s text block
and provides guidelines for making a shape’s text look good and be-
have in appropriate ways. It also describes the SmartShape Wizard,
a useful shortcut to creating custom text behavior.



1 1 4 C  H  A  P  T  E  R    6

About text in shapes

A shape’s text has a coordinate system defined by an origin and axes
relative to the shape’s local coordinate system. This coordinate system
is called the text block, and its size, location, and rotation relative to
the shape are determined by the cells in the Text Transform section in
the ShapeSheet window. When you create a shape, by default its text
block is exactly the same size as the shape’s width-height box: It has
the same width and height and has zero rotation in relation to the
shape. The default text block pin is in the center.

Sindu turqu

y

x

The local coordinate systems of a shape and its text block

Some of the questions that you should consider when you design the
text behavior for a master are:

• Where should the text block be located? This question is espe-
cially important if the shape is a group.

• Should the text block be limited to a minimum or maximum size?

• Should the text use an opaque background?

• How should the text block grow as more text is added?

• What should happen to the text block when the shape is sized,
rotated, or flipped?

• Should the master have multiple text blocks?

• Should the shape’s text determine the size of the shape?

• Should the user be prevented from adding or changing the text in
a shape?

The variety of possible text behaviors is endless, but in practice only a
limited number prove useful. After all, the goal is to produce good-
looking, readable text. Because smarter text behavior usually involves
larger, slower, and more complex formulas, you must balance the text

Local coordinates of the unrotated shape

Text block rotated with respect to the
shape’s local coordinate system



D E S I G N I N G   T E X T   B E H A V I O R 115

Text in a master

Should you include default text in a master to indicate where it
can appear? This is a good idea in either of these situations:

• There are multiple text blocks in the master, and the user
needs a cue to subselect different parts for text entry.

• The text is a standard phrase that is a natural part of the
object (for example, the word “Stop” on a stop sign).

In other situations, it may be better not to include default text in the
master:

• The user has to delete the text if it is not wanted.

• At whole page view, it is difficult to tell which shapes have the
text you want and which still display the default placeholder text.

• It may require translation in other countries.

block’s sophistication with the expected uses for the shape. There is
no single, simple answer, but consistency is important: Similar shapes
should have similar text behavior.

Defining a text block in the ShapeSheet window
The Text Transform section defines a text block within the shape’s lo-
cal coordinate system, just as the Shape Transform section positions a
shape within its group or page. To save space in the ShapeSheet win-
dow, Visio doesn’t insert the Text Transform section unless you’ve
changed a shape’s text block attributes or used the text block tool to
move the text block. However, you can add this section as you need it.

To add the Text Transform section to a shape:

1. Select the shape, then choose Show ShapeSheet from the Window
menu.

2. From the Insert menu, choose Section.

3. In the Insert Section dialog box, check Text Transform, and then
click OK.

Visio adds a Text Transform section beneath the Shape Transform
section with the values shown in the following table.

Text Transform section default values for a new shape

Cell Formula Cell Formula

TxtPinX = Width * 0.5 TxtLocPinX = TxtWidth * 0.5

TxtPinY = Height * 0.5 TxtLocPinY = TxtHeight * 0.5

TxtWidth = Width * 1 TxtAngle = 0 deg.

TxtHeight = Height * 1



1 1 6 C  H  A  P  T  E  R    6

NOTE  If the shape is a group, custom formulas that refer to the Width
and Height cells may need to be modified to access the group’s values
rather than those of a component shape.

Viewing text attributes in the ShapeSheet window
When a user applies a text style to a shape or uses a formatting com-
mand on the Format menu, Visio updates the shape’s ShapeSheet
interface. Options in the Text dialog box correspond to cells in the
Character, Paragraph, and Text Block Format sections. To view these
sections, from the View menu, choose Sections, and then check Char-
acter Format, Paragraph Format, and Text Block Format.

The row numbers displayed in these sections reflect the number of
characters that utilize the formatting defined in that row, as the fol-
lowing figure shows. For example, in a Character section with the row
numbers 18, 16, and 1, the first 18 characters in the text block have
the format described in the first row. The next 16 characters have the
format described in the second row, and so on.

The Character section for a shape with several different font formats

In general, if you write custom formulas in the Character and Para-
graph sections, be sure you consider user actions that could overwrite
your work. For example, if a user locally formats characters in a text
block, Visio adds a new row to describe the formatting of those char-
acters. When a user cuts text, Visio deletes the affected rows. If you
want to write a custom formula in a cell of the Character section,
copy the formula into that cell in each row of the section. That way, as
Visio adds and deletes rows, at least one copy of the formula is likely
to remain intact.

Shapes without text

If you create a shape that doesn’t accom-
modate text, such as a very tiny shape
without room for it, you can accept the
default behavior and assume your users
won’t add text to the shape. Or you can add
formulas to position and size the text block,
in case users type in it. But perhaps the sim-
plest thing to do is protect the shape against
text entry by setting its LockTextEdit cell in
the Protection section. You might also want
to lock masters against text editing when
they include specific text you don’t want the
user to accidentally or easily change. You
can hide text altogether by setting the
HideText cell to TRUE in the Miscellaneous
section. You can still use the text tool to type
in the shape: The text is visible as you edit,
but it won’t show in the shape when you’re
done editing.



D E S I G N I N G   T E X T   B E H A V I O R 117

Protecting text formulas

When you create custom text formulas for a shape, you can protect
your formulas so that user actions cannot overwrite them. Many
common user actions on the drawing page—formatting a font, set-
ting margins, applying a text style—affect the values of the Text
Transform, Text Block Format, Character, and Paragraph sections. If
you write formulas to customize these text attributes, you can:

• Protect the formula using the GUARD function.

• Prevent users from making changes using a protection lock.

Use GUARD to protect formulas in cells that control the position or
location of the text block. For example, protect formulas that custom-
ize text width and text height so that resizing a shape won’t overwrite
your formulas.

When you use GUARD to protect a formula in a cell that controls text
formatting, users cannot locally format the text. However, when a
user applies a text style, the formula is overwritten anyway. For this
reason, avoid placing custom formulas in ShapeSheet cells of the
Character, Paragraph, and Text Block Format sections, and instead
use the Scratch and Text Transform sections. For details about how
applying styles affects the ShapeSheet window, see Chapter 7,
“Managing styles, formats, and colors.”

Use a protection lock to prevent users from formatting a shape or
typing in it altogether. Set the LockFormat cell in the Protection sec-
tion to 1 to keep users from applying any formatting or styles. Set the
LockTextEdit cell in the Protection section to 1 to keep users from
typing in a shape (but to allow them to apply a text style). It’s best to
use LockTextEdit only in cases where entering text would damage the
shape or cause it to behave in unexpected ways (as can happen with
very small shapes).

Of course, the more protection you use, the less your users can
modify a shape. What if a user simply wants to make a final adjust-
ment to a shape’s text and then print the document? You want to be
able to give users enough flexibility to accomplish their tasks while
preserving customized shape formulas.



1 1 8 C  H  A  P  T  E  R    6

Controlling the text block’s position

When you are developing shapes, it often makes sense to move the
text block to more easily accommodate readable text. For example, in
many Visio shapes, the text block appears below the shape so that
typing in it doesn’t obscure the shape. You can easily move a shape’s
text block manually by using the text block tool. If you want to pro-
vide the users of your shapes with a more obvious method of
adjusting text position, you can add a control handle that moves the
text block.

Sindu turqu

IBM Compat ible

Changing the position of a shape’s text block

A quick way to add a control handle that moves the text block is to
use the SmartShape Wizard, which provides options for setting the
text block position, then defines a control handle for the block’s pin.

To use the SmartShape Wizard to add a control handle:

1. Select a shape, then from the Tools menu, choose Macro, then
Visio Extras, then SmartShape Wizard.

2. Under SmartShape Options, choose Customize Shape’s Text, then
click Change Option.

3. In the Text Position screen, choose the initial position you want
for the text block.

The Add Control Handle To Shape option is already checked.

4. Follow the instructions onscreen to finish the wizard.

Resizing the text block

You can quickly resize a shape’s text block
by dragging a text block selection handle.
To display the selection handles for a text
block, choose the text block tool, or choose
the text tool and then press F2.

If you are designing shapes to distribute to
other users, make sure that the text block is
big enough for users to select easily. For ex-
ample, the default size of a 1-D shape’s text
block may be too small for a user to easily
adjust with the text block tool.

To move the text block manually, select a
shape with the text block tool, then drag.

Or add a control handle to a shape so that
users can easily reposition its text.



D E S I G N I N G   T E X T   B E H A V I O R 119

The wizard defines the control handle for the text pin by adding these
formulas to the Text Transform section:

TxtPinX = Controls.X1

TxtPinY = Controls.Y1

A Controls section is added to the ShapeSheet window containing the
formulas that define the control handle’s position and its behavior as
it or the shape moves or stretches. The formulas may vary depending
on the position you set in the wizard for the text block. For example,
if you centered the text block below the shape, the wizard adds these
formulas to the Controls section:

X1 = Width * 0.5 + TxtWidth * 0

Y1 = Height * 0 + TxtHeight * -0.5

X Dynamics = Width/2

Y Dynamics = Height/2

X Behavior = (Controls.X1 > Width/2) * 2 + 2

Y Behavior = (Controls.Y1 > Height/2) * 2 + 2

The X1 and Y1 cells specify the position of the control handle in rela-
tion to the shape’s local coordinates and the text block’s coordinate
system. The control handle appears in the center of the text block.

The X Behavior and Y Behavior cells define the behavior of the con-
trol handle after it is moved or after the shape is resized. The formulas
in the X Dynamics and Y Dynamics cells set the position of the con-
trol handle’s anchor point (the origin of the “rubber band”) at the
center of the shape.

For details about control handles, see “Making shapes flexible with
control handles” in Chapter 4, “Enhancing shape behavior.”



1 2 0 C  H  A  P  T  E  R    6

Resizing shapes with text

Your shapes should look good after users edit the text or resize the
shape. You can control text behavior and appearance with formulas
that correlate shape geometry and text. The quickest way to add com-
mon text formulas is to use the SmartShape Wizard. This section
describes how to:

• Control the size of a shape’s text block as a user types in it.

• Base a shape’s size on either the amount or value of its text.

• Proportionately resize a shape’s font as the shape is resized.

Controlling text block size
When you use the SmartShape Wizard to customize text, it assumes
that you want to offset the text block from the shape, and so it adds
formulas to control text block size. These formulas set the initial size
of the text block and then ensure that the text block encompasses
added text. To offset a text block, you need to know its boundaries.
Without these formulas, a user can type outside the boundaries of the
text block.

To control the text block size, the wizard uses the MAX function to de-
fine the maximum allowable size and the TEXTWIDTH and
TEXTHEIGHT functions, which evaluate the width and height of the
composed text in a shape. The wizard adds these formulas to the Text
Transform section:

TxtWidth = MAX(TEXTWIDTH(TheText), 8 * Char.Size)

TxtHeight = TEXTHEIGHT(TheText, TxtWidth)

The width of the text block is set to whichever value is greater: the
longest text line terminated by a carriage return, or eight times the
font size (which ensures that the text block is at least wide enough to
hold a word or two.) If the text block contains text formatted with
more than one font size, this formula returns the size of the first font
used in the text block. The TxtHeight formula returns the height of
the shape’s composed text where no text line exceeds TxtWidth.



D E S I G N I N G   T E X T   B E H A V I O R 121

You can also set a text block to a minimum size by using the MIN

function. For example, this formula ensures that when a shape is
resized, its text block doesn’t stretch wider than 4 inches or smaller
than 0.5 inches:

TxtWidth = MIN(4 in., MAX(0.5 in., Width))

Basing shape size on the amount of text
You can create a shape whose size depends on the amount of text it
contains. If you want a shape that is just big enough to fit the text
typed into it, such as a word balloon or text callout shape, use the
TEXTWIDTH and TEXTHEIGHT functions as part of the formulas for
the shape’s width and height.

For example, the following formula in the Shape Transform section
limits a shape’s width to the length of the text lines it contains plus a
small margin:

Width = GUARD(TEXTWIDTH(theText) + 0.5 in.)

The function returns the width of all the text in the shape (theText).
The shape’s width is limited to that value plus 0.5 inch. The GUARD

function prevents the user from stretching the shape’s width with se-
lection handles, which would cause new values to overwrite the
formula in the Width cell. You can also set the LockWidth cell in the
Protection section to prevent users from stretching the shape.TEXTWIDTH and TEXTHEIGHT

The TEXTWIDTH and TEXTHEIGHT functions
cause Visio to recompose the shape’s text
with each keystroke. To minimize the impact
on performance, include a minimum-size
test in your formula so the shape grows only
after the text reaches a given width or
height. Beyond that width or height, Visio
still must recompose the text with each key-
stroke.

For example, you can create a 2-inch by
1-inch box that grows in height to accom-
modate text. To offset potential perfor-
mance problems, the box doesn’t resize
until the text height reaches 1 inch. To
create this behavior, add these formulas
to the Shape Transform section:

Height = GUARD(MAX(1 in.,

TEXTHEIGHT(TheText,Width)))

Width = 2 in.



1 2 2 C  H  A  P  T  E  R    6

Basing shape size on text value
You can create a shape whose size is controlled by the value of the text
it contains. For example, in a bar chart, you can ensure that the size of
a bar depends on the value it represents. With the EVALTEXT function,
you can create simple charting or other shapes into which users type
a value that determines the shape’s size. To associate a shape’s width
with its text value, put the following formula in the Shape Transform
section:

Width = GUARD(EVALTEXT(TheText))

The EVALTEXT function evaluates the text in the shape as if it were a
formula and returns the result. For example, if you type 10 cm, the
shape’s width changes to 10 centimeters. If there is no text or the text
cannot be evaluated—for example, a nonnumeric value is typed—
Width is zero. You can further refine the shape by resizing it only in the
direction of growth, such as for a bar that grows to the right. To do this,
use the rotation tool to move the shape’s pin to the stationary end.

Changing the font size as a shape is resized
By default, when a user resizes a shape, its geometry and text block
change but the font size doesn’t. You can either use the SmartShape
Wizard or write your own formulas to make font size a function of
shape geometry.

Using the SmartShape Wizard. You can use the SmartShape Wizard to
make font size a function of a shape’s size. When a user resizes the
shape, its text increases in proportion to the value of its height.

To use the SmartShape Wizard to resize text:

1. From the Tools menu, choose Macro, then Visio Extras, then
SmartShape Wizard.

2. Under SmartShape Options, choose Customize Shape’s Text, then
click Change Option.

Font size in scaled drawings

If a shape is to be used in scaled drawings,
you must take the drawing scale into ac-
count when you make font size a function of
shape height. For example, the height of a
desk in a space plan might be 1 m instead
of 3 cm.

The font-sizing formulas adjust only the
character size. Attributes such as text in-
dents and line spacing do not scale as the
shape is resized unless you use similar for-
mulas in the cells that control those
attributes.



D E S I G N I N G   T E X T   B E H A V I O R 123

3. Click Next until the Text Size screen is displayed, then choose
Font Size Changes With Shape.

4. Follow the instructions onscreen to finish the wizard.

The wizard sets the font size to a proportion of shape height by add-
ing the following formula to the Character section:

Char.Size = 1 * Height * 0.1333

Writing custom resizing formulas. If you want a shape’s size and its font
size to resize proportionately, you can use this general formula:

(Height/<original height>) * (<original font size>)

To improve shape performance, store the proportional formula in a
user-defined cell. For example, assume the original shape height is
3 cm and the original font size is 10 pt. Add the User-Defined Cells
section in the ShapeSheet window, then add these formulas:

User.FontSize = Height/3cm * 10pt

Char.Size = User.FontSize

To ensure that the font size is always readable, you can limit the range
of acceptable sizes. For example, to limit font size to between 4 and 128
points, use the MIN and MAX functions with the proportional formula:

User.FontSize = MIN(128pt,

MAX(4pt, Height/3cm * 10pt))

Be sure to use minimum and maximum font sizes that are supported
by the expected printers and drivers. If the Character section for a
shape contains more than one row, the Size cells in subsequent rows
should use similar formulas.



1 2 4 C  H  A  P  T  E  R    6

Controlling text rotation

You can control the appearance of rotated text so that users don’t
have to read upside-down text. By default, when a shape is rotated,
the text block rotates, too—a readability problem for shapes rotated
between 90 and 270 degrees. If you are designing shapes for use in
drawings where readability is an issue, you can customize text rota-
tion behavior using one of the following methods:

• To prevent upside-down text as a shape is rotated, use the
GRAVITY function, which orients the letter baseline toward the
bottom or right edge of the page.

• To prevent text from ever rotating, use a counter-rotation formula
to keep the text block level with respect to the bottom of the page
as a shape is rotated.

You can use the SmartShape Wizard to create either text behavior. In
addition, by using the wizard you can choose whether the gravity or
level text block is centered over the shape or offset from it. For ex-
ample, a text pointer like those shown in the following figures is
formatted with a solid color background and remains centered on the
shape. By contrast, if you were designing street shapes for a map,
you might want to offset the street names from the lines that repre-
sent the streets.

is
pu

t
isput

i sputisput

isput

isput

isput

isput

is
pu

t

i sput

isput

isput

is
pu

t

i sput

isput

isput

isput
isput

isput

isput
isput

isput

isput

isput

Text can rotate with a shape, or not.

Default behavior can result in
upside-down text.

Gravity formulas adjust text block
orientation for readability.

Level text formulas counter-rotate the
text block to keep it upright.



D E S I G N I N G   T E X T   B E H A V I O R 125

To use the ShapeSheet Wizard to create gravity or level text:

1. Select a shape, then from the Tools menu, choose Macro, then
Visio Extras, then SmartShape Wizard.

2. Under SmartShape Options, choose Customize Shape’s Text, then
click Change Option.

3. In the Text Position screen, choose an offset or centered position
for the text block.

If you do not want a control handle added to the text block for
positioning, be sure to check Do Not Add Control Handle.

4. Click Next until the Text Rotation screen is displayed, then
choose Level Text or Gravity Text.

5. Follow the instructions onscreen to finish the wizard.

Gravity formulas
When you choose gravity behavior, the wizard adds this formula to
the Text Transform section:

TxtAngle = GRAVITY(Angle, -60deg., 120deg.)

In the formula, the two angles specify the range for which the default
text orientation is rotated 180 degrees. When the shape is rotated be-
tween –60 and 120 degrees, the text would be oriented toward the top
or left and so must be flipped. Using this formula, the text is upright
for most angles of rotation.

If you also offset the text block from the shape, the wizard adds for-
mulas to the TxtPinX and TxtPinY cells to shift the text block pin
based on the shape’s size and the amount of text.

Counter-rotation formulas for level text
If you used the wizard to create level text, the following formula is
added to the Text Transform section to counter-rotate the text block
as the shape is rotated:

TxtAngle = IF(BITXOR(FlipX, FlipY), Angle, –Angle)
Rotating a rotated text block

If you rotate a shape’s text block (such that
TxtAngle > 0 degrees), then rotate the
shape, the amount of the shape’s rotation is
added to the value of TxtAngle.



1 2 6 C  H  A  P  T  E  R    6

This formula uses –Angle if the shape has been flipped in both di-
mensions or has not been flipped at all (if FlipX and FlipY are either
both 1 or both 0). It keeps the original angle if the shape has been
flipped in only one dimension (if either FlipX or FlipY is 1). Visio
writes only the values 0 or 1 (for FALSE and TRUE) into the FlipX and
FlipY cells, so you can safely assume these are the only values present.
However, the following TxtAngle formula works in any case:

TxtAngle = IF(FlipX, –1, 1) * IF(FlipY, –1, 1)

* (–Angle)

If the shape will never be flipped, you can use a simpler formula to
counter-rotate the text block:

TxtAngle = -Angle

Constraining text block size: some examples

With the SmartShape Wizard, you can create level text behavior for a
variety of common cases, but you may need greater control. When
you’re designing level text for a small shapes, the shape can become
obscured by the text if a user types a lot of text or rotates the shape to
certain angles. You can constrain the width of the text block to ac-
commodate shapes using the methods described below.

Lorem ipsum dolor
magna

Lorem ipsum dolor
magna

Lorem ipsum
dolor magna

Lorem ipsum dolor
magna

Centered, level text can obscure the Smart formulas widen the text block
shape when rotated, and by default if the shape is rotated out of the way.
constrains the text block width.



D E S I G N I N G   T E X T   B E H A V I O R 127

Constraining the width of a level text block
With some shapes, such as 1-D arrows or short shapes, counter-rotat-
ing text to keep it level isn’t enough. As the shape rotates, the level text
may obscure portions of the shape, as in the preceding figure. This is
especially true when the text block is centered horizontally and verti-
cally on the shape and has an opaque background. You can write
formulas that keep the text block level and adjust its width as neces-
sary when a user rotates the shape or adds text.

When you use the counter-rotation formula described earlier in this
chapter, the text block stays level as the shape rotates. The default Text
Transform formulas constrain text block width to shape width, which
may not be useful or attractive if the shape is rotated and stretched.
To constrain the text block width to the shape width only if the shape
is within 15 degrees of horizontal, use the following formulas. In this
example, when the shape is rotated beyond 15 degrees, the text block
is set to a fixed width (2.5 in.).

TxtWidth = MAX(0.5 in., IF(Scratch.B1, 2.5 in.,

Width – 0.25 in.))

TxtHeight = 0.25 in.

TxtAngle = IF(BITXOR(FlipX, FlipY), Angle, –Angle)

Scratch.A1 = DEG(MODULUS(Angle, 180 deg.))

Scratch.B1 = AND(Scratch.A1 >= 15 deg.,

Scratch.A1 <= 165 deg.)

The formula in the TxtWidth cell above keeps the text block at least
0.5 inches wide for readability. If the shape is rotated beyond the
limit, text block width is set to 2.5 inches; otherwise, it is set to the
shape’s width minus 0.25 inch to prevent the text from obscuring the
shape. The formula in the B1 cell of the Scratch section performs the
rotation test, returning 0 (FALSE) if the text block width is con-
strained by the shape width, or 1 (TRUE) if the text width is
unconstrained. The formula in the A1 cell yields a shape angle nor-
malized to a value from 0 degrees to 180 degrees to determine
deflection from horizontal.

These formulas work most of the time, but they fail for short shapes
that are close to the horizontal limit and have wide text. A more so-
phisticated solution would take the width of the shape and the
composed width and depth of the text into account, but this solution
would affect performance.



1 2 8 C  H  A  P  T  E  R    6

Controlling the width of an offset level
text block
You can use the SmartShape Wizard to customize a shape’s text block
so that it remains level and is also offset from the shape. For example,
in a space plan, you may want to move and rotate furniture but keep
the labels right-side-up as viewed on the page, as the following figure
shows. However, depending on the alignment of the text block, the
shape’s rotation, and the amount of text, the text block can obscure
the shape. You can write formulas so that the position of the offset
text block is automatically adjusted if the shape rotates or if text
is added.

Lorem ipsum
dolor ameLorem ipsum

Level text offset from a shape

In the TxtAngle cell, the counter-rotation formula levels the text. The
offset is calculated by requiring that, in the shape’s local coordinate
system, the left side of the text block be to the right of the edge of the
shape. The following figure shows that the offset is the sum of line 1
and line 2. Line 1 is the leg of a right triangle whose hypotenuse
equals TxtHeight/2, so its length is calculated using this formula:

Line 1 = (TxtHeight/2) * ABS(SIN(Angle))

Line 2 is a leg of a right triangle whose hypotenuse equals TxtWidth/
2, so its length is calculated using this formula:

Line 2 = (TxtWidth/2) * ABS(COS(Angle))

The offset is always a positive value, even when the shape is rotated at
a negative angle, because we use the ABS function to return the abso-
lute value for lines 1 and 2. The resulting formula looks like this:

TxtPinX = Width + (TxtWidth * ABS(COS(Angle))

+ TxtHeight * ABS(SIN(Angle))) /2

The nearest corner of the text block is
offset from the shape’s side.

As text is added, the offset
shifts so the text block
won’t overwrite the
shape.



D E S I G N I N G   T E X T   B E H A V I O R 129

➋

➊

Calculating the text block offset

No matter how the shape is rotated, the text block stays offset from an
imaginary boundary running along the shape’s side. Calculating the
offset this way means we don’t need additional formulas to keep the
text block from overwriting the shape as it rotates. In addition,
custom formulas calculate the width and height of the text block
based on the size of the text it contains. Following are the resulting
formulas.

TxtWidth = MAX(8 * Char.Size, TEXTWIDTH(theText))

TxtHeight = TEXTHEIGHT(theText, TxtWidth)

TxtAngle = IF(BITXOR(FlipX, FlipY), Angle, –Angle)

TxtPinX = Width + (TxtWidth * ABS(COS(Angle)) +

TxtHeight * ABS(SIN(Angle)))/2

TxtPinY = Height/2

Edge of shape

TxtWidth/2

 TxtHeight/2

TxtPinX offset = ➊ + ➋



1 3 0 C  H  A  P  T  E  R    6

Controlling text in a group

Only shapes have text blocks; groups do not. For groups composed
of more than one shape, you need to decide which shape’s text block
receives the insertion point when a user selects the group and starts
typing. By default, the topmost shape in a group receives the text.
To add text to any other shape in the group, a user must subselect
the shape.

The simplest way to designate the shape that will accept text is to
move that shape to the front of the group with the Bring To Front
command on the Shape menu. For readability, you can create a new
shape with no line or fill for this purpose, as the following figure
shows. This is particularly helpful if the shapes in your group have
dark fill.

30
SPEED
LIMIT

SPEED
LIMIT

30
Use a group for a master that requires multiple text blocks with different styles.

The road sign shape was created as a group so that users could easily
edit only the number portion of the sign without editing the “Speed
Limit” label. In addition, by grouping you can use different text styles
for the two grouped shapes. The master includes default text, such as
“Speed Limit 30,” which shows users where the shape can be edited.
In such a shape, you can use the master’s prompt to tell users to
subselect the other text blocks for editing.

If more than one shape in a group can accept text, text block formu-
las become complex because they must access transform data in the
ShapeSheets cells of both the enclosing group and the shape contain-
ing the text. It’s best to isolate as many of the formulas as possible in
the shape that has the text and use simpler formulas for text block
positioning.

NOTE  Verify that the group you design can accept text. If the topmost
shape in a group is itself a group, when a user presses the F2 key to
edit the shape’s text, nothing happens, and the user must open the
group and find a shape that contains a text block.

A text-only shape with no line
or fill

The topmost shape, which
users are mostly likely to edit

This master is a group.



D E S I G N I N G   T E X T   B E H A V I O R 131

Displaying and formatting formula results

You can display the results of a ShapeSheet formula, such as in a text
field, and format the output appropriately. When you choose the Text
Field command from the Edit menu and select Custom Formula,
Custom Properties, or User-Defined Properties, the text field created
is really the value from the evaluated formula in a cell converted to
text. You can use the same techniques to develop custom text fields as
those you use in the ShapeSheet window, and display the formatted
results in the shape itself.

When you create a custom formula for a text field using the Text Field
command, the formula appears in the shape’s Text Fields section. Vi-
sio displays the ShapeSheet formulas in the order they were inserted
in the text, not necessarily the order in which they appear in the text.
Deleting a text field in the drawing window does not automatically
delete the corresponding text field row in the ShapeSheet window.

The following sections provide examples for using custom formulas
in text fields.

Displaying a shape’s width in different units
You can use text fields to show a shape’s current width in inches, cen-
timeters, points, or other units. To do this, you can use the FORMATEX

function to specify the units you want to display for the result. The
FORMATEX function takes this syntax:

FORMATEX(expression,"picture",["input-unit"],

["output-unit"])

This function returns the result of expression evaluted in input unit as
a string formatted according to picture expressed in output unit. The
format picture is a code that indicates how the result should be for-
matted. If you specify the optional input unit and output unit, use a
numerical value or a valid spelled out or abbreviated unit of measure
(in, in., inch, and so on). If you don’t specify input unit, the units of
the expression are not converted. If you don’t specify output unit, the
units of the result are used.

Units in earlier versions of Visio

The FORMATEX function is not available in
versions of Visio prior to 4.5. If you are de-
veloping shapes for earlier versions of Visio,
you can approximate the behavior of this
function by specifying the units you want to
display for the result as the first number-unit
pair in a formula. For example, if you are in-
serting a text field to display a shape’s
width, you can enter this custom formula to
ensure that Width is displayed in meters:

= 0 m + Width

You can use the same technique to coerce
the units displayed with the result of any for-
mula, not just one in a text field.



1 3 2 C  H  A  P  T  E  R    6

To use the FORMATEX function to display the shape’s width in a
text field:

1. Select a shape with the text tool.

2. From the Insert menu, choose Field.

3. In the Category section, choose Custom Formula.

4. In the Custom Formula box, enter an expression using the
FORMATEX function, specifying the desired format picture,
and input and output units.

For example, if Width is in inches and you want to display it in
centimeters, enter:

= FORMATEX(Width,"0.00 u","in.","cm")

5. Click OK.

Visio formats the value of Width using two decimal places,
abbreviates the units, and converts it to centimeters. For example,
if Width is 1.875 in., Visio displays 4.76 cm.

For details about valid format pictures that you can use, search online
help for “format picture.”

Displaying normalized angular values
You can design a shape that displays the current angle of rotation in
its text box. For example, shapes representing lines of bearing on a
nautical chart or slope indicators in a property line diagram display
the current angle. By default, Visio returns angular values between
–180 and +180 degrees. You can use the ANG360() function to con-
vert the value of the shape’s angle to a value between 0 and 360
degrees (or between 0 and 2π radians), then display the value in the
shape.

To display the value of a normalized angle in a text field:

1. Drag a shape onto the drawing page, then select it.

2. From the Insert menu, choose Field.

3. In the Category section, choose Custom Formula.

4. In the Custom Formula box, enter:

= ANG360(Angle)

5. In the Format section, choose Degrees.



D E S I G N I N G   T E X T   B E H A V I O R 133

Formatting strings and text output

When you display strings, such as formula results in a text field or
custom property values, you can specify a format for the output. Text
output can be formatted as a number-unit pair, string, date, time, du-
ration, or currency. Visio recognizes a set of format pictures that
format the text as you want it to appear. For example, the format pic-
ture "0 #/10 uu" formats the number-unit pair 10.9cm as "10 8/9
centimeters".

Format pictures appear in the list of formats when you choose Fields
from the Insert menu, as arguments to the FORMAT and FORMATEX

functions, and as formulas you can use in the Format cell of the Cus-
tom Properties section. For details about all the format pictures that
you can use, including date, time, duration, currency, and scientific
notations, search online help for “format function.”

Using the FORMAT function
In any formula that resolves to a string, including custom text field
formulas, you can use the FORMAT function to format the output.
The FORMAT function uses the following syntax:

FORMAT(expression, "picture")

The result of expression is formatted according to the style specified
by picture, which is enclosed in quotation marks. The function
returns a string of the formatted output. The format picture must be
compatible with the type of expression used, and you cannot mix
expression types. For example, if you combine the formatting of a
date and a number by using the number and date format pictures
together ("#.## mmddyy"), Visio ignores the "mmddyy" portion and
tries to evaluate the expression using the first part ("#.##") of the for-
mat picture.

To use the FORMAT function in a text field, specify a custom formula
as described in the previous section, “Displaying and formatting for-
mula results.” In the Custom Formula box, include the FORMAT

function in your formula.

The following table provides examples for formatting common
number-unit pairs.



1 3 4 C  H  A  P  T  E  R    6

Custom text formats for number-unit pairs

Syntax Display output

FORMAT( 0ft. 11.53in., "0.## U") 0 FT. 11.53 IN.

FORMAT( 260.632 cm, "0.## u") 260.63 cm.

FORMAT( 0 ft. 11.53 in. , "# #/# u") 11 5/9 in.

FORMAT( 260.632 cm, "0 #/# uu") 260 5/8 centimeters

FORMAT( 260.632 cm, "0 #/5 uu") 260 3/5 centimeters

FORMAT( 0ft. 11.53in., "0.000 u") 0 ft. 11.530 in.

Displaying formatted custom properties
You can format the displayed value of a custom property so that it ap-
pears the way you want in the Custom Properties dialog box. To do
this, you use a format picture in the Format cell. In addition, you can
display the value of a custom property in a text field. By using the
Field command on the Insert menu, you can specify a custom prop-
erty and a format picture for the value.

For example, a project timeline shape can have a custom property
called Cost that measures the cost of a process. To format "1200" as
currency, you can use the following format picture in the Custom
Properties section:

Format = "$###,###.00"

In the U.S. English version of Microsoft Windows, the value is dis-
played in the Custom Properties dialog box as "$1,200.00". Under the
German version of Windows, it appears as "DM1.200,00". Visio uses
the current Regional Settings in the Windows Control Panel to deter-
mine the currency symbol, decimal character, and thousands
separator to display.

In the Field dialog box, you can specify a custom property under Cat-
egory. Visio displays a list of appropriate format pictures based on the
custom property’s data type.

If you intend to perform calculations with custom properties, you
can define a data type other than string for the property value, such as
number, currency, date or time, and duration. For details, see “Working
with custom properties” in Chapter 4, “Enhancing shape behavior.”



D E S I G N I N G   T E X T   B E H A V I O R 135

Testing text block formulas

The best way to test your text block formulas for a given situation is
to try them. The following are procedures that we use at Visio to test
the positioning and resizing of a shape’s text block. To ensure that the
position of the text block remains correct as a user manipulates the
shape, you need to test all combinations of flipping, rotating, and re-
versing ends.

To test a shape’s text block positioning:

1. Create an instance of the master you want to test, and then type
some text in it.

2. Duplicate the instance seven times. Rotate each instance by
increments of 45 degrees. Arrange the eight instances in a rosette.
Group the instances for easier handling.

This is a test set, and illustrates how the shape normally behaves
under various rotations.

Intui
urque
nimus Intuiurquenimus

Intui
urque
nim

us

Intui

urque

nimus

Intui
urque
nimus

In
tu

i
ur

qu
e

ni
m

us

Int
ui urq

ue nim
us

Int
ui

urq
ue

nim
us

3. Duplicate the test set two times (for 2-D objects) or five times
(for 1-D objects), and arrange as rows with three columns.

4. If testing a 1-D shape, select the three groups in the bottom row
and choose Reverse Ends from the Shape menu.

5. Select the group(s) in the middle column and choose Flip Vertical
from the Shape menu.



1 3 6 C  H  A  P  T  E  R    6

6. Select the group(s) in the right column and choose Flip Horizon-
tal from the Shape menu.

7. Print the results and examine them in detail. Fix any problems
and test again as needed.

Next you should test your shape’s ability to handle text. To do this,
you replace the test text in every shape, then check the results.

To test how a shape resizes as text is added:

1. Use the text tool to select one of the shapes, and then type new
text.

Type enough text to stretch the text block in a manner appropri-
ate to the intended use of the shape.

2. Press Ctrl+A to select all the shapes.

3. Press F4 to repeat the new text in all the selected shapes.

4. Print the results and examine them. Fix any problems and test
until you get the results you want.

5. As a final test, resize each group. Try both moderate and extreme
sizes.

Do they work the way you expected? Does the text still look
good? Can you at least read it? If not, maybe you should specify
a minimum text width. For details, see “Constraining text block
size: some examples” earlier in this chapter.



Topics in this chapter

Working with styles in the drawing page ................................................... 138

Modifying the formats of shapes and masters .......................................... 141

Managing color in styles, shapes, and files ............................................... 144

Using styles in stencils and templates ....................................................... 147

Protecting local shape formats ................................................................... 149

Creating custom patterns ........................................................................... 150

7
Managing styles,
formats, and colors

As a shape developer, you apply styles to the shapes you draw to en-
sure consistency. You also define the styles and custom options, such
as custom fill patterns, that will appear in the templates you create for
your users. Styles in Visio work a little differently from styles you may
have used in other software, such as word-processing or spreadsheet
programs. You can define and apply separate styles for text, lines, and
fill, or styles that apply all of these attributes at once.

This chapter explains how to apply and create styles when you’re
working with shapes and provides guidelines for designing the styles
that appear in your templates. It also explains how to change format-
ting attributes of the masters you work with and protect the styles of
the masters you create. This chapter also describes how to create cus-
tom line patterns, fill patterns, and line ends that your users can apply
just like any Visio format.



1 3 8 C  H  A  P  T  E  R    7

Working with styles in the drawing page

Styles are named collections of formatting attributes that you can ap-
ply to a shape. In Visio, a single style can define text, line, and fill
attributes, so applying a style is an efficient way to promote consis-
tency in your shapes.

When you apply a style to a shape, you are formatting the following
attributes:

• For text, the font type, size, style (such as bold or italic), and
color; text block alignment, margins, and background color;
paragraph alignment, indents, and spacing; and tab spacing

• For lines, the line weight, color, pattern, cap, arrowhead style, and
corner style

• For fills, the pattern and the foreground and background colors
for a shape’s interior (its fill) and for its shadow, if there is one

You can apply a style to a shape, or you can apply local formatting us-
ing the commands on the Format menu to achieve the same effect. If
many of your shapes have the same format, styles are a more efficient
use of computer resources than local formatting. A style definition is
stored in only one place in a Visio document, and several shapes can
refer to it. With local formatting, all the formatting instructions are
stored separately for each shape. Shapes formatted using styles re-
spond faster than locally formatted shapes when they are created,
moved, scaled, and rotated.

Lorem

Lorem

Lorem

A

A

A Ipsum

A Ipsum

Ipsum

Local formatting attributes are stored When you apply a style to a shape,
with each shape. the style definition stores the

formatting information in one place.

Local formats

Style



M A N A G I N G   S T Y L E S ,   F O R M A T S ,   A N D   C O L O R S 139

In the documents you create, you can separately define styles for text,
line, and fill attributes. Visio organizes styles on the toolbar by text,
line, and fill attributes so that users of your templates can quickly ap-
ply the style they want. For ease of use, most styles in templates
supplied by Visio affect only one set of attributes. For example, the
Times Centered style changes only text attributes.

A single style can apply a combination of attributes. For example, one
style can define a particular fill color and font. The style will appear
on the toolbar under each attribute; in this case, under Fill and Text.
When a user applies such a style from the toolbar, Visio asks if it
should apply all the related styles at the same time or only the specific
set of attributes the user selected.

When you apply a style to a shape that is locally formatted, the at-
tributes defined in the style replace any corresponding local
formatting. Locally formatted attributes that are not specified in the
style are unaffected. For example, if a shape’s line is locally formatted
and you apply a text style that specifies only text formatting, the local
formatting of the line remains intact, and only the text style changes.
For details, see “Protecting local shape formats” later in this chapter.

Setting default styles for a drawing
When you are drawing a number of shapes, you can ensure consis-
tency by specifying the styles that you use most as the document’s
default styles. Visio applies the default text, line, and fill styles cur-
rently set for a drawing page when you draw using any of the tools on
the toolbar. You can also set default styles for a template’s drawing
page to help its users draw consistently or according to particular
standards.

To change the default styles used by a drawing page:

1. Make sure nothing is selected and that the drawing page window
is active, then choose Style from the Format menu.

2. In the Text Style, Line Style, and Fill Style boxes, select the new
default styles you want, then click OK.

The new default styles affect any shapes you subsequently draw
with the drawing tools. Instances of masters dragged onto the
drawing page are not affected—they inherit their styles from the
master. The new default styles remain in effect for a drawing page
until you change them again.

Applying a style

To apply a style to a shape, select the
shape, then choose a style from the Text,
Line, or Fill style lists on the toolbar. Or se-
lect the shape, then choose Style from the
Format menu. Select a style from one or
more of the boxes for the attributes you
want to change, then click Apply. For details
about applying styles and formatting,
search online help for “styles.”



1 4 0 C  H  A  P  T  E  R    7

Creating a new style
You can create a new style to include in your template or to quickly
and consistently format several shapes. The styles you define in your
templates appear to the user in the Text, Line, and Fill style lists on
the toolbar and in the Style and Define Style dialog boxes.

You can create a new style from scratch or base it on an existing one.
The advantage of creating new styles based on existing ones is that
you develop a hierarchy of styles in which changing one style affects
all of the styles that are based upon it, as the following figure shows.
You must be careful, though, not to inadvertently edit a series of
styles—and all the shapes formatted with those styles—when you
mean to edit only one.

A

A

A

A

Deriving a new style from an existing, “base” style

When you create a new style, Visio fills in appropriate settings de-
pending on whether the style is based on an existing one:

• A new style that you base on another style inherits the base style’s
attributes, and the new style name appears in the Fill, Text, or
Line style lists as appropriate.

• If you are creating a style from scratch, Visio defines the default
settings for the attributes you check under Includes in the Define
Styles dialog box.

To create a style, choose Define Styles from the Format menu. The
Based On option controls whether the style is based on another. After
you have defined a style, you can apply it to shapes on a drawing
page. For details about creating a style, search online help for “styles.”

Derived style definition

The derived style inherits its line and fill
from the base style.

Editing the base
style changes
the derived style.

Base style definition

Copying styles between documents

If you have defined a style for one drawing
file and want to use it in another, you can
copy the style. To do this, drag a shape for-
matted with the style into the file lacking the
style. (Or copy and paste the shape.) Then
delete the shape. The style definition re-
mains in the file. Be careful, though, that the
destination file doesn’t contain a style with
the same name. If it does, when you copy
the shape, the style definition doesn’t get
copied: The existing definition takes prece-
dence.



M A N A G I N G   S T Y L E S ,   F O R M A T S ,   A N D   C O L O R S 141

Modifying the formats of shapes and masters

Whether you’re dropping masters onto a drawing page, designing
shapes for your own stencils, or creating a new template, using styles
is an efficient way to format shapes. Visio offers several techniques for
applying and editing styles. The technique you use depends on
whether you want to reformat all shapes that use a particular style,
reformat the master itself and so all subsequent instances of it, or
change the instances currently on a drawing page, as follows:

• To change the appearance of all instances of a master on the
drawing page as well as those you add later, you can edit the
drawing file’s styles.

• To change the appearance of a master, you can reformat it by
applying different styles in the standalone stencil.

• To quickly reformat only the instances of a master on the drawing
page, you can edit the copy of the master on the local stencil.

To determine the style currently used for a shape, select the shape, then choose
Style from the Format menu.

When you add custom attributes to a shape, you can create a
new style based on the example of the existing shape. That way,
you can apply those custom attributes to other shapes as well.
For example, say you have created a line and entered a
ShapeSheet formula that evaluates to 3 mm in the LineWeight
cell. If you are drawing many 3 mm lines, it’s more efficient to
create a style that you can reuse.

To create a style, select the example of the existing shape; for
example, the line. Choose Define Styles from the Format menu.
Choose New Style, then type a name for the style, such as “3 mm
line.” Visio fills in the attributes for the new style based on your
selection—in this case, the line width is already set to 3 mm. Click
Apply to close the dialog box and save the new style, which you
can now apply to other shapes.

Creating a style by example

Styles currently applied to the shape



1 4 2 C  H  A  P  T  E  R    7

Editing a style to reformat shapes
You can edit a style to change the appearance of all shapes in a draw-
ing page that use the style. To do this, use the Define Styles command
on the Format menu to revise the text, line, or fill attributes of an ex-
isting style. All shapes formatted with the edited style are changed.

For example, say you’re working with the Flowchart stencil, but you
want text to appear in 10-point, italic, Times Roman type. Shapes
from this stencil are formatted with the text style “Flowchart Nor-
mal.” You can use the Define Styles command to change the style
definition for “Flowchart Normal” to format text in the font you
want. The new definition affects all shapes on the drawing page to
which the style is applied as well as any new shapes you add that are
formatted with that style.

A new style definition is saved only with the current drawing file. The
standalone stencil and its masters are not changed. (The stencil file
has its own style definitions.)

Reformatting masters in a standalone stencil
You can reformat masters in a standalone stencil by choosing new
styles, and thus reformatting any instances subsequently created from
those masters. Unlike editing a style to reformat the shapes that use it,
this procedure changes the definition of the master in a stencil and
saves the changes to the stencil. Use this procedure to edit masters in
stencils you use in many different drawings.

To reformat a master with different styles:

1. Open the stencil file. Make sure Original is selected in the Open
dialog box.

2. In the stencil window, double-click the master you want to edit to
open it in the master drawing window.

3. Select the shape, or subselect the shape you want if the master is a
group, then reformat the shape as you want it to appear.

For example, choose Style from the Format menu, choose a text,
line, or fill style to apply, then click OK.



M A N A G I N G   S T Y L E S ,   F O R M A T S ,   A N D   C O L O R S 143

4. In the master drawing window, click the Close box.

When Visio prompts you to update the master, click Yes.

5. Make sure the stencil window is active, then choose Save from the
File menu.

The edited master is saved in the stencil. If you need to revert
to the previous version of the master, you can edit it again to
reformat it using the original styles. Or if it is a Visio stencil,
you can reinstall the original from your Visio CD.

Reformatting all instances of a master
You can quickly reformat all instances of a master without changing
either the master or its style definition. When you want to reformat
instances, edit the copy of a master on the local stencil.

To do this, choose Show Master Shapes from the Window menu to
open the local stencil, then double-click the master of the instances
you want to affect. In the master drawing window, make the changes
you want, then close the window and, when prompted, save your
changes to see the effects on the drawing page.

By editing the copy of a master on the local stencil, you edit all of its instances in
the drawing page.

Local stencil



1 4 4 C  H  A  P  T  E  R    7

Managing color in styles, shapes, and files

When you are designing masters, you need to consider how the color
of the master will look when used on different user systems. You can
apply color to a shape using either the Visio color palette or a custom
color that you define. The method you choose affects how the shape
appears if used in another document. You can apply color to a shape
using the following methods:

• By applying a color from the Visio color palette, you choose an
index of one of the palette’s colors. Visio records only the index to
the color palette, not the color itself.

• By defining an RGB (red, green, blue) or HSL (hue, saturation,
luminosity) value, either in the Color dialog box or as a
ShapeSheet formula, you apply a custom color to a shape.

The color palette appears in the Color Palette dialog box, shown in
the following illustration, as well as in the drop-down list of colors in
the Fill, Line, Font, Text Block, and other dialog boxes. For any docu-
ment that uses the default Visio palette, a color index refers to the
same color: 0 is black, 1 is white, 2 is red, and so on.

Choose the Color Palette command from the Tools menu to display a document’s
color palette, which you can edit.

To edit the color palette, select a color…

…then click Edit to
display the Color dialog
box, where you can
pick a different color for
that index.



M A N A G I N G   S T Y L E S ,   F O R M A T S ,   A N D   C O L O R S 145

However, users can choose the color they want to appear at any index
by editing the color palette. If they do, any shape mapped to that in-
dex can change color. For example, if you apply a fill color to a master
by clicking red in the palette, Visio records the shape’s fill color as 2. If
a user creates an instance of the red master in a document in which
the second index in the color palette has been edited, the shape’s fill
color will change to whatever color appears at index 2.

Most users do not edit a document’s color palette, so a shifting color
is not likely to be an issue. But you can ensure that a shape’s color
never changes, regardless of a document’s color palette, by using a
custom RGB or HSL color. To specify a custom color as a ShapeSheet
formula, use either the RGB or HSL function.

Standardizing color palettes across documents
When you’re designing stencils that you intend to open with a tem-
plate, you should use the same color palette in all documents. If the
color palettes do not match, the colors defined by an index in a
master’s styles can change when an instance is dragged into a docu-
ment that has a different color value at that index. To standardize the
color palette used in documents that are intended to open together,
such as stencils and templates, you can copy the color palette used in
one file to another.

If you edit the color palette in a stencil file, you can copy the colors to
the drawing page in the same template.

To copy a stencil’s color palette to a template:

1. Open the template file.

2. From the Tools menu, choose Color Palette.

3. Under Copy Colors From, select the stencil whose color palette
you want to copy to the template file, then click OK.

Be sure to save the document.



1 4 6 C  H  A  P  T  E  R    7

Specifying color as a ShapeSheet formula
You can define shape color using a function that specifies an RGB or
HSL value. For example, to ensure that a stop-sign shape is always red,
you can enter the following formula in the Fill Format section:

FillForegnd = RGB(255,0,0)

The RGB function’s three arguments specify the red, green, and blue
components of the color. Each can have a value from 0 to 255, inclu-
sive. To specify the color using an HSL value, you could instead use
the formula HSL(0,240,120) in the FillForegnd cell. For details about
function syntax, see online help.

Rather than specifying color constants as the argument to these func-
tions, you can use the RED, GREEN, and BLUE or HUE, SAT, and LUM

functions to return the value of a color constant from the document’s
color palette or from another ShapeSheet cell. For example, in the
stop-sign example above, RED(FillForegnd) returns 255, the value of
the red component in the fill color. You can use the RGB and HSL

functions together with the other color functions to define a color
based on another cell’s color in the same or a different shape. This is
particularly useful in a group containing shapes of related but not
identical colors. You can define the grouped shape’s colors in terms of
one shape’s color in the group. For example, if the topmost shape in a
group is Sheet.1, you could enter the following in Sheet.2:

FillForegnd = RGB(RED(Sheet.1!FillForegnd),0,0)

If a user applies a new color to the group, the topmost shape changes
color, but Sheet.2 changes only the proportion of red in its fill color.

When you specify a custom color using the RGB or HSL functions, the
color is added to the bottom of the color list in the Fill, Line, Font,
and other dialog boxes in which you can assign color. If you create a
master from a shape to which a custom color has been assigned, then
drop an instance of it in another Visio document, the custom color is
added to that document’s color lists as well.

A custom color is saved only with the shape to which it has been ap-
plied. If you delete a shape with a custom color, and then save and
close the document, the next time you open the document the
custom color is no longer included in the color list of the different
dialog boxes.



M A N A G I N G   S T Y L E S ,   F O R M A T S ,   A N D   C O L O R S 147

Using styles in stencils and templates

When you’re designing stencils and templates for others to use, your
styles should be consistent and easy to use. Users may perceive styles
as the only formatting options available, so it’s often better to include
a larger number of styles in your templates than is strictly necessary.

Users frequently notice the toolbar’s style lists before they discover the formatting
commands on the Format menu.

The following sections provide tips for making sure your style defini-
tions work consistently in the masters, stencils, and templates you
create for your users.

Keeping styles consistent across files
When you create a stencil that will be used with a template, the style
definitions should be the same in both the stencil and template files.
When a user creates an instance of a master, the instance inherits the
master’s styles, which Visio applies as follows:

• If a style of the same name does not already exist in the drawing
file, it is copied from the stencil file and added to the drawing file.

• If a style of the same name already exists in the drawing file, the
existing style is used.

Visio style guidelines

At Visio, we develop styles according to these guidelines:

Text styles use TrueType fonts that ship with Windows.
We limited our font choices to those we knew everyone using
Windows 95, Windows 3.1, or Windows NT would have. However,
if you know that users will have other fonts (especially fonts
created for specialized markets, such as cartographic symbols),
you can safely use those fonts in your text styles.

Fill and line styles use colors supported by a standard 16-color
VGA monitor. We limited our color choices to those available on
the most limited graphics system our users might have.

All styles are based on Normal, rather than on each other.
When you have a hierarchy of styles based on each other, chang-
ing one style affects all of the styles that are based upon it. We
thought this behavior might confuse inexperienced users, so our
styles are not based on other styles. However, you may want to
take advantage of this powerful feature of Visio in your solutions.

Most styles apply only one formatting attribute (fill, line, or text),
or all three. Multiple-attribute styles can be confusing to inexperi-
enced users. You might find, however, that your users always use
one fill, one line, and one text style for a specific shape you’re
designing. This is the perfect opportunity to develop a style con-
taining all three formatting types. Visio displays a message box to
alert the user when such a style is applied from the toolbar.



1 4 8 C  H  A  P  T  E  R    7

If the style’s definition in the drawing file differs from the definition
in the stencil file, Visio uses the drawing’s definition, and the shape’s
appearance in the drawing is different from that of the master. This
behavior is sometimes referred to as the “home team wins” rule, be-
cause the style on the drawing page “wins” over the formatting
attributes of a style with the same name in a master. It’s not easy to
ensure that styles are consistent. You can inspect each style definition,
but this is tedious. One technique is to save a copy of the stencil file
(.VSS) as a template file (.VST), delete all the masters in the template
file, and save the workspace file (.VSW) to get identical styles and
colors.

If you plan to save the drawing page as a stencil or template, you’ll
save file space by deleting any styles that are not used by your shapes.
To do this, use the Define Styles command on the Format menu. An-
other method is to open a new drawing file that contains only the
default styles, then drag the shapes formatted with the styles you
want to copy into the new file. For details about cleaning up stencils
and templates, see Chapter 9, “Packaging stencils and templates.”

Using naming conventions for styles
The styles you create for your stencils and templates will be easier to
use if you consistently follow a naming convention. Explicit style
names, such as “Quarter-Inch Black Line” or “8pt Arial Left,” are
more expressive and understandable than abbreviated names, such as
“Line2,” or “T8L.” Styles appear in alphabetical order in the toolbar
lists and in the Style and Define Styles dialog boxes.

Good naming conventions keep related styles together in the lists,
making it easier for users to find the styles they need. Line, fill, and
text styles with similar attributes should have similar names. For ex-
ample, if you name a 1-pixel-wide line style “1 Pixel Line,” you should
name a 3-pixel-wide line “3 Pixel Line,” rather than “Line3.” At Visio,
we use one of two different conventions for naming styles, depending
on how we expect the style to be used:

• Styles specific to a shape or stencil are named according to the
shape (or shapes) they’re applied to, such as Flow Connector
Text.

• General-purpose styles are named according to their formatting
attributes, such as Black Line or Arial Centered.

Deleted styles

What happens if a shape in the drawing
or on the local stencil uses a style that you
delete? If the deleted style was based on
another style, the shape assumes the base
style. If the style wasn’t based on another,
the shape assumes the No Style style, a
default Visio style that cannot be deleted
from a document.



M A N A G I N G   S T Y L E S ,   F O R M A T S ,   A N D   C O L O R S 149

TIP  To make a style appear at the top of the style list in Visio, preface
the style’s name with a character that has a low ASCII value, such as a
hyphen (-). For example, “- Standard Line” or “- Corporate Blue.”

Protecting local shape formats

Applying a style can change the formulas in the Line Format, Fill For-
mat, Text Block Format, Character, and Paragraph sections for a
shape. Any local (custom) formulas in the related ShapeSheet cells
can be overwritten. For example, you might write a custom formula
in the Size cell of the Character section to dynamically change font
size of your master based on text block height. If a user applies a dif-
ferent text style to the shape, the custom formula is overwritten.

As a Visio developer, you can protect a shape from both formatting
and style changes by setting the LockFormat cell to 1 in the Protec-
tion section. If you protect a group in this manner, you automatically
protect the shapes and other groups within it from inheriting format-
ting; however, users can subselect shapes in the group that are not
explicitly locked and change their formatting. For details about pro-
tecting formatting in a group, see Chapter 3, “Controlling shape size
and position.”

You can use the GUARD function to prevent ShapeSheet formulas
from changing when a user applies local formatting to a shape, but it
doesn’t prevent a style from being applied. The ShapeSheet cells re-
flect formatting values; they do not record the names of styles applied
to a shape, so you can’t guard against the application of styles. For ex-
ample, if you protect the FillForegnd cell with GUARD, users cannot
use the Fill command to edit the shape, but they can apply a fill style,
which will overwrite the formula in the FillForegnd cell.

Use the LockFormat cell and GUARD function with care. When a
shape is locked against formatting, Visio automatically displays a
message when a user tries to format the shape. The GUARD function
works without any notification or user messages. Either behavior may
confuse or annoy users who want to format a protected shape. As you
develop shapes, you must find the appropriate balance between limit-
ing shape behavior and increasing user flexibility in your solution.



1 5 0 C  H  A  P  T  E  R    7

Creating custom patterns

You can create additional fill patterns, line patterns, and line ends.
For ease of discussion, these styles are collectively termed custom pat-
terns and appear to users as options in the Fill and Line dialog boxes.
To design the custom pattern, you create a master that represents one
instance of the pattern, such as a dot that, when applied as fill, looks
like a complete pattern, such as polka dots. A master pattern is a spe-
cial type of master that appears to end users only as an additional fill
pattern, line pattern, or line end.

When you create a master pattern, you set its properties to specify:

• The master pattern name.

• The type of custom pattern: fill pattern, line pattern, or line end.

• The pattern’s behavior—how the custom pattern is applied to a
shape and how it changes as the shape is stretched or formatted.

• The custom pattern’s use in scaled or unscaled drawings.

A custom pattern is always saved as a master pattern on a stencil. To
distinguish master patterns from master shapes, the icon for a master
pattern appears only if a stencil is opened as a copy or original. When
a stencil containing master patterns is opened, the master pattern
names appear in alphabetical order at the bottom of the appropriate
list of options in the Fill or Line dialog box. Users can then apply the
custom pattern as they would any standard pattern.

When a user applies a custom pattern, Visio copies its master pattern
to the document’s local stencil. The custom pattern then remains
available in the active document, even if the standalone stencil con-
taining the original master pattern is closed. If a user does not use a
particular custom pattern during the current working session, it no
longer appears in the Fill and Line dialog boxes after the stencil is
closed. If a user copies a shape formatted with a custom pattern to
another document, the usual inheritance rules apply: The master pat-
tern is copied to the new document’s local stencil, unless the new
document already contains a master pattern of the same name, in
which case the local master of that name is applied to the shape.

Many of the techniques that you use to develop master shapes also
apply to developing master patterns. For example, you—and your us-
ers—will have more predictable results if you use a single shape or a
group in your master (shape or pattern). You can always combine
multiple geometries to create a single shape using the commands on

Custom patterns as formulas

When a user applies a custom pattern to a
shape, Visio records the choice by inserting
the USE function in the FillPattern,
LinePattern, BeginArrow, or EndArrow cell.
For example, if a user applies a custom line
end called Star to the begin point of a line,
the BeginArrow cell of the line will contain
the formula USE(“Star”).



M A N A G I N G   S T Y L E S ,   F O R M A T S ,   A N D   C O L O R S 151

the Operations submenu of the Shape menu. In addition, you should
create a master pattern as a single instance of the minimum design re-
quired to repeat as intended.

NOTE  Do not use text or a bitmap in a master pattern. Neither would
appear when the pattern is applied to a shape.

To create a custom pattern:

1. Open a new stencil, or open an existing stencil as a copy or
original.

2. From the Master menu, choose New Master.

3. In the Master Name box, type a name for the custom pattern as
you want it to appear in the Fill and Line dialog boxes.

4. Under Master Type, choose Line Pattern, Line End, or Fill
Pattern.

5. In the Behavior box, choose an option to specify how the pattern
is applied to a shape.

For details about custom pattern behavior, see the following
sections.

6. Check Scaled if the custom pattern models an object with real-
world dimensions.

For example, if you’re creating a fill pattern of 4-inch-square
kitchen tiles, check Scaled to preserve the pattern dimensions
when it’s applied to a shape on a scaled drawing page.

7. Click OK to add a new, empty master to the stencil.

8. Double-click the master to open the master drawing window,
where you can draw the custom pattern you want.

If you want users to be able to change the color of a pattern or
line end after it’s applied to a shape, design the master pattern in
black and white, as described in the following sections.

9. After you create the pattern, close the master drawing window,
and save your changes to the stencil.

The master icon for the custom pattern appears in a stencil open as a
copy or original. If you open the stencil as read-only, however, the
icon does not appear. When a custom pattern is applied to a shape, its
master icon appears on the document’s local stencil.

About a pattern’s alignment box

Visio applies custom fill patterns, line pat-
terns, and line ends based on the size of
their alignment box. To ensure that your
pattern or line end works as expected,
you can design an alignment box with
dimensions that differ from the size of the
pattern itself.

For details about creating a custom-size
alignment box, see “Adjusting a shape’s
alignment box” in Chapter 8, “Scaling,
snapping, and aligning.”



1 5 2 C  H  A  P  T  E  R    7

Developing custom fill patterns
You can design custom fill patterns that fill a 2-D shape in one of
three ways, depending on the behavior you choose in the Properties
dialog box for the master. The most common type of fill pattern be-
havior is tiled, where instances of the pattern are repeated to fill the
shape from the lower-left corner outward, as shown in the following
figure.

To create a patterned floor tile, instances of the pattern are repeated to fill the
shape from the lower-left corner outward.

You can also create a centered or stretched fill pattern. In a centered
pattern, a single instance of the pattern fills the shape. Visio aligns the
pattern’s pin with the shape’s pin. In a stretched pattern, a single in-
stance of the pattern is stretched horizontally and vertically to fill a
shape. Visio disregards the position of the pattern’s pin.  As you resize
the shape, the pattern resizes, too, unlike the built-in patterns.

Fill pattern colors. If you design your fill pattern in black and white,
users can set the pattern color when they apply it to a shape as they
can any Visio pattern. White areas (line or fill) in your pattern inherit
the foreground fill color of the shape to which the pattern is applied;
black areas (line or fill) in your pattern inherit the shape’s back-
ground fill color. If your pattern contains any colors other than black
and white, the pattern retains those colors when applied to a shape.

Designing tiled patterns. The most common fill pattern behavior is
tiling, in which the pattern is tiled by the edges of its alignment box.
You can get different tiling effects by creating a pattern with a larger
or smaller alignment box, as the following figure shows, or by placing
the pattern off-center within its alignment box. For details about cre-
ating a custom-size alignment box, see “Adjusting a shape’s alignment
box” in Chapter 8, “Scaling, snapping, and aligning.”

Tiles the pattern from the lower-left
corner of a 2-D shape

Centers the pin of one pattern
instance on a shape’s pin

Stretches one pattern instance
to fill an entire shape



M A N A G I N G   S T Y L E S ,   F O R M A T S ,   A N D   C O L O R S 153

A tiled fill pattern with a custom alignment The pattern fills the shape from
box. the lower-left corner.

When your tiled pattern represents a real-world object, check Scaled
in the Properties dialog box for the master. For example, a 1-ft by 1-ft
ceramic floor tile is always the same size, regardless of the drawing
scale in which it is used. The default fill pattern behavior is unscaled,
which means the pattern behaves like the built-in Visio line patterns:
They always print at the same size, regardless of drawing scale.

On a drawing page that uses an architectural scale, an unscaled pattern looks the
same as on a page with no scale, but a scaled pattern retains its dimensions.

The master pattern includes two offset
triangle shapes in a large alignment box.



1 5 4 C  H  A  P  T  E  R    7

Developing custom line patterns
By applying a custom line pattern, a user can reformat a line as rail-
road track, a garden path of stepping-stones, or any other line
pattern. When you design a line pattern, consider how the pattern re-
peats along the length of the line and around curves and corners.
Consider also whether the pattern should be resized when the line
weight changes. These considerations—the pattern’s behavior—de-
termine the manner in which Visio applies the pattern to a line and
can dramatically affect the line’s appearance.

You choose a Behavior option in the Properties dialog box for the
master to control how a line pattern is applied to a line. You can de-
sign line patterns to behave in one of four ways, as the following
illustrations show.

To create a railroad track, each instance of the pattern is bent to fit around curves
as it repeats along the length of the line.

To create a garden path, each instance of the pattern is positioned and rotated as
it is repeated along the length of a line. The pattern instances don't bend.

Bends instances of the pattern
to fit a curved line

Repeats instances of the pattern
to fit a line without bending
around curves



M A N A G I N G   S T Y L E S ,   F O R M A T S ,   A N D   C O L O R S 155

To create a tapered line, a single instance of the pattern is stretched along the
entire length of a spline.

To create a flow line, the pattern is repeated on top of the line, fitting whole
instances of the pattern between corners. The alignment box is larger than the
arrowhead to control the spacing between instances of the pattern.

Customizing the alignment box and pin. To design an effective line pat-
tern, you must consider the size of the alignment box and pin
position as well as the shape of the pattern. In fitting a pattern to a
line, Visio aligns the pattern’s pin to the line and repeats or stretches
the pattern by the edges of its alignment box. If the alignment box is
larger than the pattern, Visio leaves spaces between pattern instances
as it repeats the pattern on the line. This is how you would create a
stripe that repeats at precise intervals. If the alignment box is smaller
than the pattern, you’ll get an overlapping effect when the pattern is
applied. For details about creating a custom-size alignment box, see
“Adjusting a shape’s alignment box” in Chapter 8, “Scaling, snapping,
and aligning.”

Stretches a single instance of the
pattern along the length of a line

Repeats instances of the pattern on top
of a line for a “string of beads” effect



1 5 6 C  H  A  P  T  E  R    7

By changing a line pattern's alignment box, you can control how instances of the
pattern repeat along a line.

Line with Flow Arrow pattern applied Line with Overlap Arrow pattern applied

Scaled versus unscaled line patterns. If you design an unscaled line
pattern (that is, the Scaled option is unchecked in the Properties dia-
log box for the master), when a user applies the line pattern, Visio
resizes its alignment box until its height equals the line weight. Scaled
line patterns keep their dimensions regardless of the drawing scale or
the line weight.

Color in line patterns. When you design a line pattern, apply black to
the areas (line or fill) that you want users to be able to change by
choosing a new color in the Line dialog box. Apply white or any other
color to the areas you don’t want users to be able to change. Set the fill
of your line pattern to None if you want the fill area to be transparent
when applied to a line.



M A N A G I N G   S T Y L E S ,   F O R M A T S ,   A N D   C O L O R S 157

Developing custom line ends
A custom line end is the simplest type of custom pattern to create—
it’s simply a shape that can attach to the endpoint of a line. When you
design a line end, you determine whether it can adjust to the direc-
tion of the line to which it’s attached and whether it resizes as the line
weight changes. You can design a line end to:

• Orient itself with respect to the line. If you move the line, the line
end adjusts to point in the same direction.

• Orient itself with respect to the page. If you move the line, the
line end remains upright as viewed on the page.

Visio attaches the pin of the line end to the endpoint of a line. If the
line end behavior is to orient with respect to the line, Visio trims the
line between its endpoint and the bounding box of the line end for a
seamless look. Otherwise, the line is not trimmed. As you design a
line end, consider where to place the pin to achieve the right effect.
For example, to design an arrowhead, you would draw a triangle,
then move the pin to the pointing tip.

NOTE  A line end must point to the right; otherwise, it won’t be ap-
plied properly.

The Simple Arrowhead is a right The Refined Arrowhead is a group
triangle with black fill. with an alignment box that is slightly

narrower than the triangle. The pin
was moved to the arrowhead’s point.

The Simple Arrowhead line end The Refined Arrowhead line end
applied to a 36-pixel line. applied to a 36-pixel line.

Keeps the line end straight
with respect to the line

Keeps the line end upright
with respect to the page



1 5 8 C  H  A  P  T  E  R    7

TIP  To move a shape’s pin, select the shape, choose Size & Position
from the Shape menu, then click in the Position box grid. Or select the
shape with the Rotation tool, then drag the pin to a different position.

Another consideration in designing a line end is whether its size
should be affected by the line weight of the line to which it is applied.
If you design an unscaled line end (that is, leave Scale unchecked in
the Properties dialog box for the master), Visio will set the height of
the line end’s alignment box to equal the line weight as long as the
user sets Size to Medium (the default) in the Line dialog box. How-
ever, on a 1-pixel line, the line end may not be visible. To ensure that
your line end works at any line weight, you can customize its align-
ment box. If a user sets Size to something other than Medium, the
line end resizes in the same way any line end resizes. For details about
creating a custom-size alignment box, see “Adjusting a shape’s align-
ment box” in Chapter 8, “Scaling, snapping, and aligning.”

If your line end represents an object with real-world dimensions,
such as a fitting at the end of a pipe, check Scaled in the Properties
dialog box for the master. The Size and Weight settings in the Line
dialog box will have no effect on the size of a scaled line end.



Topics in this chapter

Choosing an appropriate drawing scale ..................................................... 160

Choosing a scale for masters ...................................................................... 162

Working with rotated pages ....................................................................... 166

Designing a grid .......................................................................................... 167

Creating shapes that snap to the grid ........................................................ 169

Aligning shapes to guides and guide points ............................................... 173

8
Scaling, snapping,
and aligning

When the drawings your users create represent real-world objects,
they need shapes and templates that draw to scale. You can design
masters that size appropriately when users drag them into a drawing
page with a scale, such as 1/4 inch = 1 foot. If you design the template
as well, you can ensure that the scale of the drawing page works with
the scale of the masters you provide, and thereby simplify a compli-
cated drawing task for your users.

This chapter explains how to choose an appropriate scale for draw-
ings and shapes that need to be scaled. In addition, it describes the
effect of rotated pages on shapes and guides, and how to choose the
appropriate-size drawing grid and create shapes that align precisely
to the chosen grid.



1 6 0 C  H  A  P  T  E  R    8

Choosing an appropriate drawing scale

Any drawing that depicts physical objects that are too small or too
large to be drawn easily, or are larger than the paper size, must be
scaled to fit on the page. For example, in an architectural rendering of
a house, 1/4 inch on the drawing page might represent 1 foot of the
actual house. Schematic diagrams such as flowcharts and organiza-
tion charts depict abstract objects, so these types of drawings are
unscaled, and shapes appear at their actual size.

In Visio, drawing units are sizes in the real world. In the house ex-
ample above, 1 foot is the drawing unit. Page units are sizes on the
printed page—1/4 inch in the house example. The ratio of page units
to drawing units is the drawing scale.

ShapeSheet cells that describe object size or position—that is, most
cells—are expressed in drawing units. Cells that represent measure-
ments on the printed page, such as text format and indents, are
shown in page units. If the drawing scale is changed, all ShapeSheet
cells that are expressed in drawing units remain constant, but the
shape is redrawn to the new scale.

In the the following figure, the swimming pool is 40 feet long and 20
feet wide, drawn using a 1-point line, and labeled using 8-point type.
With a drawing scale of 1/4 inch = 1 foot (1:48), the picture of the
pool is drawn 10 inches long by 5 inches wide. If you change the
drawing scale to 1/8 inch = 1 foot (1:96), the pool is still 40 feet long
and 20 feet wide; however, the picture of the pool is now only 5 inches
by 21/2 inches. Regardless of the scale, the line size remains 1 point
and the font size 8 points.

Pool
20 ft. x 40 ft.

Pool
20 ft x 40 ft.

In drawing units, the pool is 40 ft by 20 ft regardless of the drawing scale.

Drawing scale: 1/8 in. = 1 ft (1:96)

In page units, the pool is 5 in. by 21/2 in.
in this drawing scale.

Drawing scale: 1/4 in. = 1 ft (1:48)

In page units, the pool is 10 in. by 5 in.
in this drawing scale.



S C A L I N G ,   S N A P P I N G ,   A N D   A L I G N I N G 161

To choose the appropriate drawing scale to include in a template,
consider the following:

• The expected size of the drawing in drawing units

• The paper size users will print their drawings on

• The industry or drawing conventions that apply to the drawing
type users create with your template, such as margins or title
blocks

For example, a user can print a house plan on an 81/2-inch by 11-inch
sheet of paper in landscape orientation. If the drawing scale is 1/4 inch
= 1 foot, the drawing page represents 34 feet by 44 feet (assuming no
margins). This may not be large enough to accommodate the house
and its landscape design. Instead you might choose a larger scale,
such as 1/8 inch = 1 foot or 1 inch = 10 feet.

You can also use elapsed time rather than elapsed distance for a page
scale by setting the drawing units to hours, days, weeks, months, and
so on. For example, you can use elapsed weeks (abbreviated “ew.”) as
the drawing units for the diagram of a project timeline.

To set the drawing scale for a page:

1. From the File menu, choose Page Setup, then click the Page
Properties tab.

2. In the Measurement Units box, choose the drawing units you
want, then click the Page Size tab.

3. Under Page Size, choose the orientation and size of paper the
drawing will be printed on.

The values in the Page Size tab show you the drawing unit
measurements of your page according to the selected scale and
paper size.

4. On the Drawing Scale tab, choose the type of scale you want.

For details about options, click the Help button.

TIP  To ensure that a master you create matches the drawing scale for
a template’s page, edit the master and repeat the preceding procedure
in the master drawing window. For details, see “Setting the master’s
scale” later in this chapter.

Page units in ShapeSheet cells

Most ShapeSheet cells that reflect size or
position represent drawing units. Cells that
reflect page units include paragraph prop-
erties and text margins. A complete list of
the cells that represent page units is
shown below:

••••• Text Block section: TopMargin,
BottomMargin, LeftMargin, RightMargin

••••• Paragraph section: IndFirst, IndLeft,
IndRight, SpLine, SpBefore, SpAfter

••••• Line Format section: LineWeight

••••• Character section: Size

••••• Page Properties section: ShdwOffsetX,
ShdwOffsetY, PageScale



1 6 2 C  H  A  P  T  E  R    8

Choosing a scale for masters

Masters can be scaled, as well as drawing pages. A shape’s appearance
on the drawing page depends on the master’s scale and the drawing
page’s scale. If either a shape or the page is scaled and the other is
unscaled or has a very different scale, the shape can behave in unex-
pected ways when the user drags it onto the page. If users aren’t aware
of scaling differences, they may become frustrated when they try to
use shapes on a page with an incompatible scale.

Although you can’t prevent users from creating a new drawing of any
scale and dragging your shapes into it, you can make sure that the
drawing pages you provide with your templates have drawing scales
that match those used in your masters. You can also create masters
that work in as many different drawing scales as possible.

Determining an appropriate master scale
It is always best if the drawing scale of a master matches the drawing
scale of the page it is dropped on. This is not always possible, how-
ever, so within certain limits Visio handles differences of scale by
making sure that the shape as drawn is the same size in drawing units
as the master. This limit is known as the “range of eight.” If the scale
of the shape does not differ from that of the drawing page by more
than a factor of eight—that is, if the drawing scale of the master is no
more than eight times greater or smaller than the drawing scale of the
page—Visio calculates the shape’s size in drawing units and scales it
appropriately on the drawing page. This behavior prevents a shape
from becoming so large that it obscures the drawing page or so small
that you can’t see it.

You can create a master of a table that can be used in space planning
templates that vary in scale from 1/2 inch = 1 foot (drawing scale of
1:24) to 1 inch = 10 feet (drawing scale of 1:120). In the figure on the
next page, when a 48-inch table shape is dragged into a drawing
whose scale doesn’t differ by more than a factor of eight, the table is
properly scaled. The Shape Transform section shows its width is still
48 inches.

If the difference in scales exceeds a factor of eight, Visio antiscales the
shape: The shape is drawn in the same size in page units as the size of
the master. The user can resize the shape once it is dropped. For ex-
ample, in the figure on the next page, when the table shape is dragged
into a drawing whose scale is outside the range of eight, the shape ap-
pears at the same size in page units as the master (2 inches), but Visio
recalculates its width using the drawing scale of the page.

Changing the range of eight

You can change the range of eight—it’s a
setting in the VISIO.INI file. To set the range
to a different factor, change the value for
the AutoScaleConversionRatio setting in
VISIO.INI. Only the version of Visio running on
your computer is affected. If you plan to dis-
tribute your shapes, you must still design
them with the range of eight in mind, or
change the AutoScaleConversionRatio set-
ting for all users.



S C A L I N G ,   S N A P P I N G ,   A N D   A L I G N I N G 163

1' 2' 3' 4'

1'
2'

3'
4'

4'

10' 20' 30' 40'

10
'

20
'

30
'

40
'

40'

5' 10' 15' 20'

5'
10

'
15

'
20

'

4'

How shapes are redrawn at different scales according to the range of eight

Visio applies the range of eight rule only to width and height values.
Constants in formulas are not adjusted. So, for example, typing the
following formula in a cell of the Geometry section may cause unex-
pected results:

Width – 1 ft

Because Visio changes the shape’s width, the Width reference will be
scaled, but 1 foot will remain 1 foot in drawing units, so the shape
may still look strange even after it has been correctly scaled.

Scale ratio: (1/24) / (1/120) = 5

Within the range of 8, so shape is scaled

Scale ratio: (1/24) / (1/240) = 10

Master scale:
1/2 in. = 1 ft

Scale ratio:
1:24

Size (drawing
units): 4 ft

Printed size
(page units): 2 in.

Drawing scale:
1 in. = 10 ft

Scale ratio:
1:120

Size (drawing
units): 4 ft

Printed size
(page units): .4 in.

Drawing scale:
1 in. = 20 ft

Scale ratio:
1:240

Size (drawing
units): 40 ft

Printed size
(page units): 2 in.

Outside the range of 8, so shape is antiscaled



1 6 4 C  H  A  P  T  E  R    8

To take advantage of the range of eight in designing your masters, try
one of these tips:

• Set the scale of a master in between the largest and smallest
scales in which the master is likely to be used. This way, the
master works with the greatest range of drawing scales within
the range of eight. This “middle scale” can be calculated as the
square root of the largest drawing scale ratio times the smallest
drawing scale ratio.

• Set the master scale to an extreme scale so that the shape always
antiscales when dropped on the page. For example, use a scale
such as 1000 inches = 1 inch, which is well outside the range
of eight.

Setting the master’s scale
In general, you should set the scale of a master equal to the scale
of the drawing page the master will be used with. By default, a master
uses the scale of the drawing page on which it was created, before
the shape was dragged into a stencil. Or if you use the New Master
command to create a master directly on the stencil, by default
the master is unscaled. To set a master’s scale, use the Master Setup
command, which is available only when you are working in the mas-
ter drawing window.

To set the scale for a master:

1. Select a master in your stencil, then choose Edit Master from the
Master menu.

NOTE  To edit a master, the original stencil file must be opened.
If the stencil is opened as read-only, you cannot edit its masters.

2. From the File menu, choose Page Setup, then click the Drawing
Scale tab.

3. Under Drawing Scale, choose the scale you want.

Choose Architectural, Civil Engineering, or Mechanical Engi-
neering to choose from among the built-in industry-standard
scales for these professions. Choose Metric to set a standard
metric page scale ratio. Choose Custom Scale to enter a
different scale.



S C A L I N G ,   S N A P P I N G ,   A N D   A L I G N I N G 165

Creating antiscaled shapes that are never scaled
You can create antiscaled masters—shapes that are the same size in
page units for all drawing scales. For example, a title block in an ar-
chitectural drawing or a legend in a map should remain the same size
no matter what scale is used in the drawing. Visio has two page for-
mulas that allow you to determine the scale: ThePage!PageScale and
ThePage!DrawingScale. You can write an antiscaling formula that
uses the ratio of these two values to convert a value expressed in page
units to its equivalent in drawing units.

To convert a page unit value into the equivalent drawing unit value,
multiply by this ratio:

ThePage!DrawingScale / ThePage!PageScale

If you write a custom formula for a master using this ratio, users can
drag the shape into any drawing scale, and the shape’s scale does not
change. For example, to create a shape that is always 5 cm wide on pa-
per, enter this formula in the Shape Transform section:

Width = GUARD(5 cm * (ThePage!DrawingScale /

ThePage!PageScale))

If you want users to be able to resize the shape, do not use the GUARD

function. When a user creates an instance from this master on a page
that has a scale of 1-cm = 1 m, the Width formula is reevaluated for
the destination page’s scale:

= 5 cm * (1 m / 1 cm)

= 5 cm * 100

= 500 cm

When the shape is printed or displayed onscreen at actual size, Visio
scales the 500-cm shape to 5 cm.

If you are creating a number of antiscaled masters, you may find it
more efficient to store the antiscaling formula in a user-defined cell
of the page sheet, such as User.Antiscale. That way, you can quickly
edit the antiscaling formula by changing values in only one place, the
page sheet. The formula of any antiscaled master becomes:

Width = 5 cm * ThePage!User.AntiScale



1 6 6 C  H  A  P  T  E  R    8

Working with rotated pages

You can enable page rotation so that a user can rotate a page in a
drawing window. This option is enabled by default in Visio Technical
5.0. For other Visio products, you can enable it by choosing Options
from the Tools menu, clicking the Advanced tab, then checking the
Enable Page Rotation option. When this option is enabled, users can
rotate the view of a page by clicking the Rotation Tool button on the
Standard toolbar, then dragging a page corner in the drawing window.

When you open a window and display a page, it is rotated according
to the current value of its Angle cell. This cell is not visible in the
ShapeSheet window, but you can set it through Automation methods.
These three events can affect the value of the Angle cell:

• Dragging the page corner with the rotation tool in a previously
opened window

• Setting the Angle cell to a new value through Automation

• Disabling the Enable Page Rotation option, which resets the
Angle cell to 0 for every page currently displayed

You can display a page in more than one drawing window and display
a different angle of rotation for each window.

When you rotate a page, you affect only how a drawing window dis-
plays the page. Shapes on a page are expressed in the same
coordinates regardless of the page’s rotation. In addition, rotating a
page doesn’t affect the page’s appearance when printed or the appear-
ance of the rulers and grid in the window. The rulers and grid are
always displayed perpendicular to the window frame, not to the page,
even if the page is rotated. In a rotated page, shapes snap and align
with respect to the rulers’ and grid’s orientation, not the page’s.

Although a page and a master both have Transform cells, they do not
display a Transform section in their ShapeSheet windows. You can ac-
cess a page’s Transform cells through Automation, but Visio reserves a
master’s Transform cells for internal use, and you cannot access them
programmatically.

The only Transform cell that affects the behavior of a page in Visio is
its Angle cell, which you can access through the PageSheet property.
For details about changing the value of a cell through Automation,
see “Working with formulas” in Chapter 14, “Working with drawings
and shapes.”



S C A L I N G ,   S N A P P I N G ,   A N D   A L I G N I N G 167

Designing a grid

In Visio, by default the drawing page displays a grid. If you design the
scale of your shapes and drawing pages with the grid in mind, your
users can quickly snap a drawing into place.

This section contains instructions for designing the grid to comple-
ment your masters and templates, and tips for creating shapes that
work within the grid. Not all shapes need to snap to a grid, and not all
templates require a customized grid. For most technical drawings,
however, the grid is a useful tool that you should consider when
designing your masters. To hide the grid, uncheck Grid on the
View menu.

Setting a template’s grid
When you set up the drawing page in a template, you can decide
whether the grid is variable or fixed. With a variable grid, the grid in-
crements change as you zoom in and out. A fixed grid displays the
same increments at every magnification. With either type, you can set
how finely the grid and rulers are subdivided. In any view, users
should be able to easily snap to a grid that works with the grid spac-
ing used for the masters.

To set the grid spacing for a template, choose Ruler & Grid from the
Tools menu. The settings in the Ruler & Grid dialog box are stored in
the page sheet in the Ruler & Grid section. The variable grid settings
are stored in the XGridDensity and YGridDensity cells. The fixed grid
settings are stored in the XGridSpacing and YGridSpacing cells. To
add this section when you are viewing a page sheet, from the Insert
menu, choose Sections, and then check Ruler & Grid.

Creating a master that works with the grid
If you design masters so their dimensions are multiples of an under-
lying grid spacing, users can take advantage of the Visio snap-to-grid
feature to drag shapes into precise positions quickly. When snapping
to grid lines is enabled, the edges of a 2-D shape’s alignment box snap
to visible grid lines, showing the user the exact position of the shape.
In addition, when a user drags a master from the stencil, the instance
is easily aligned on grid lines when dropped.



1 6 8 C  H  A  P  T  E  R    8

For a 2-D shape, the snap-to-grid action is most useful if both the
width and the height of the shape are multiples of the spacing of the
currently displayed grid, as the following figure shows. If this is not
the case, opposite edges of the object snap separately, the dragging
behavior of the shape is jerky, and users must pay attention to
whether the left or right edge snaps to the grid.

Designing a shape with width and height as integers of the grid spacing

To ensure that shapes snap to the correct position on the grid, mas-
ters should use the same units of measure as the drawing page. When
you set up the drawing page for your templates, specify the same
units of measure as those used for all the masters to be used with that
template. You use the Measurement Units option on the Page Proper-
ties tab in the Page Setup dialog box for the master drawing window
to set units of measure for a master. To set the units for a template,
use the Measurement Units option on the Page Properties tab in the
Page Setup dialog box.

If you want something other than a shape’s edge to snap, you can ad-
just the alignment box. For details about customizing the alignment
box, see “Creating shapes that snap to the grid” later in this chapter.

TIP  If you are designing two masters that are likely to be connected,
position their connection points so that when the masters are both
snapped to the grid and appear to be aligned, the connector will
travel a straight path between the two closest connection points. For
details about connection points, see Chapter 5, “Making shapes con-
nect: 1-D shapes and glue.”

Height = 1/2 inch (2 * grid)

Grid spacing = 1/4 inch

Width = 1 inch (4 * grid)



S C A L I N G ,   S N A P P I N G ,   A N D   A L I G N I N G 169

Using formulas to hold grid information
To create masters based on a grid that you may change, you can store
the basic grid spacing used for a shape as a formula in a shape or page
sheet. For example, you may want to adapt a template and stencil de-
signed for a 1/4-inch grid for use with a different unit of measure,
such as centimeters. You can store the grid spacing in a Scratch cell,
then define shape width and height in terms of the value of the
Scratch cell. Visio doesn’t otherwise store the basic grid spacing with
a master, so by writing a custom formula you can easily edit the mas-
ters in a stencil to work with different grids.

For example, the formulas create a shape for a 1/4-inch grid.

Scratch.A1 = 0.25 in.

Width = 6 * Scratch.A1

Height = 4 * Scratch.A1

Because the A cells in the Scratch section are unitless cells, you can
specify any unit you want in the formula. The value is in drawing
units, just like the cells of the Shape Transform section. To make the
shape work in a grid based on centimeters, simply edit the value of
the Scratch.A1 cell and specify 1 cm instead of 0.25 in.

If your template’s drawing page uses a fixed grid, you can define the
shape formulas in terms of the grid spacing stored in the page’s sheet.
Instead of storing the grid spacing as a Scratch variable, the width
and height formulas refer to the grid information in the page:

Width = 6 * ThePage!XGridSpacing

Height = 4 * ThePage!YGridSpacing

Creating shapes that snap to the grid

When a user drags a shape into the drawing window, Visio snaps the
shape’s selection rectangle, or alignment box, to the nearest grid line.
All shapes have an alignment box, which by default is the same size as
the shape’s width-height box. If a shape is asymmetrical or composed
of odd-sized components, users may find it harder to predict its
alignment and snapping behavior. Or you may want parts other than
the outer edges of the shape to snap to the grid. You can customize a
shape’s alignment box to clarify its intended use.



1 7 0 C  H  A  P  T  E  R    8

An alignment box may be larger or smaller than the shape it represents.

If a shape is rotated at an angle that is not a multiple of 90 degrees,
the alignment box is the smallest upright rectangle that contains all of
the paths of the shape as if their line thickness were set to zero.

Adjusting a shape’s alignment box
You can customize the size of an alignment box for a shape. For ex-
ample, you can design a series of different shapes with the same-size
alignment box so that they snap and align correctly, as the following
figure shows. To do this, you draw the alignment box first, and
then prevent Visio from changing it as you create and edit the shape’s
geometry.

M

Masters with customized alignment boxes

To define an alignment box that differs from the width-height box:

1. Draw your shape.

2. Select the shape, then from the Window menu, choose Show
ShapeSheet.

3. In the Protection section, set the formula for the LockCalcWH
cell to 1.

This setting preserves the current alignment box so that it won’t
change as you define the shape’s geometry.

4. Use the pencil, line, arc, or rectangle tool to add to and modify
the shape’s geometry.

This custom alignment box is what you’ll see as long as the shape’s
Angle cell is a multiple of 90 degrees.

The alignment box is displayed when a
shape is dragged or moved.

The alignment box for these 1-D valves is
the same height because they’re used to

connect other shapes.

To make alignment easier, the Data
shape’s alignment box is the same size

as the Process shape. Process shape



S C A L I N G ,   S N A P P I N G ,   A N D   A L I G N I N G 171

The alignment box does not encompass
the group’s label shape.

Enclosing a shape in a larger alignment box
You can enclose a shape in an alignment box that’s larger than the
width-height box. This can make the shape easier for users to snap to
the grid. For example, the symbol for an electrical outlet is a rectan-
gular shape enclosed in a larger, square alignment box to make it
easier to position the shape.

To enclose a shape in a larger alignment box:

1. Draw the shape.

2. Draw another shape that is the size you want for the larger
alignment box.

3. Select the two shapes, and then press Ctrl+G to group them.

4. Select the group, choose Open Group from the Edit menu, and
then delete the alignment box shape from the group.

Customizing a group’s alignment box
You can customize the size of a group’s alignment box to make your
master easier for users to snap and align. When a master is a group of
one or more shapes, the group supplies the alignment box. For some
shapes, the default group alignment box would not align the shape
appropriately. In the following figure, the shape is a group with a cus-
tom alignment box.

M
A custom alignment box that is smaller than the group

To create a group with a custom-size alignment box:

1. Construct the separate shapes that will make up the master. Don’t
customize formulas for these shapes yet.

2. Use the rectangle tool to create a shape the size and position of
the desired alignment box.



1 7 2 C  H  A  P  T  E  R    8

3. Select the alignment box shape and group it.

4. Select the group, and then from the Edit menu choose Open
Group to open it in the group window.

5. Select all the shapes you want to add to the group and drag them
into the group window.

6. Delete the temporary alignment box shape.

7. Add custom formulas to the shapes as desired.

Changing the alignment box for 1-D shapes

By default, a 1-D shape’s endpoints are centered horizontally in its
alignment box. By moving the begin point and end point within the
shape’s local coordinate space, you can change the alignment box and
make it easier for users to align your shape. For example, the follow-
ing figure shows a 1-D wall shape with endpoints at the wall’s edge,
rather than its center. When users drag the shape, the line of the
alignment box follows the edge used to connect the wall.

A customized alignment box for a 1-D wall shape

To move the alignment box for a 1-D shape:

1. With the rectangle tool, draw the shape.

2. Select the shape, and then from the Format menu, choose
Behavior. Check Line (1-Dimensional), then click OK.

3. From the Window menu, choose Show ShapeSheet.

4. In the Shape Transform section, type 0 in. in the LocPinY cell.

Moving the y-position of the local pin aligns the endpoints with
the shape’s edge.

TIP  You can hide the alignment box of a 1-D shape such as a connec-
tor if displaying it would interfere with the shape’s function. Choose
Behavior from the Format menu, then uncheck Show Alignment Box.
Or set the NoAlignBox property to TRUE in the Miscellaneous section
of the ShapeSheet window.

Updating an alignment box

A shape’s alignment box will no longer coin-
cide with its width-height box after you edit
its vertices or, in a group, after you resize a
shape, or add a shape to or delete one from
the group. To explicitly realign the alignment
box with the width-height box, choose Up-
date Alignment Box from the Tools menu. If
you define a control handle at a shape ver-
tex, moving the control handle also changes
the shape’s geometry so that the alignment
box no longer coincides with the width-
height box. In this case, you can set the
UpdateAlignBox cell in the Miscellaneous
section to TRUE so that the alignment box
always resizes as the control handle is
moved.

The endpoints are aligned with the wall’s
edge to make it easier to place.



S C A L I N G ,   S N A P P I N G ,   A N D   A L I G N I N G 173

Aligning shapes to guides and guide points

When you design a template, you can help your users work more effi-
ciently by including guides or guide points on the drawing page.
Guides are the nonprinting lines on the drawing page used for align-
ment, as the following figure shows. A guide point is the
crossbar-shaped guide dragged from the intersection of the two rul-
ers. Users can then quickly align and move shapes by gluing them to a
guide or guide point—when a guide is moved, all shapes glued to it
also move.

There are advantages to using guides instead of the grid to align
shapes. The grid is always displayed in even intervals. If you want to
align shapes to an uneven grid, drag guides to the required positions.
(You may then want to disable snapping to grid by choosing Snap &
Glue from the Tools menu.) You can also rotate a guide by choosing
Size & Position from the Shape menu, but not the grid (which always
appears horizontal and vertical with respect to the window, not the
page). In addition, a guide or guide point has a ShapeSheet interface,
unlike a variable grid, which means you can write formulas to control
a guide’s position or to automate the alignment of shapes to a guide.

TIP  To change the orientation of a guide on a drawing page, right-
click the guide, then choose View Horizontal or View Vertical.

You can glue a point, a side, or the middle of a two-dimensional shape to a guide.

Creating guides and guide points

To create a guide, with the mouse, point to
either the horizontal or vertical ruler. The
pointer changes to a two-headed arrow.
Drag to where you want the guide on the
drawing page. To create a guide point, drag
from the intersection of the two rulers.

To select a guide on the drawing page, click
the guide with the pointer tool. The guide
turns green. You can then move it, delete it,
choose Size & Position from the Shape
menu to rotate it, or display it in the
ShapeSheet window.

To turn off the display of guides for a docu-
ment, from the View menu, uncheck Guides.
You can also disable snapping to guides. For
details, search online help for “snapping
shapes into place.”



1 7 4 C  H  A  P  T  E  R    8

Guides in a rotated page
When you create a guide, it is parallel to the ruler you dragged it
from. Rulers are always vertical and horizontal with respect to the
window, not the page, so if you create a guide in a rotated page, the
guide does not necessarily appear to be rotated with respect to the
page you place it on. To specify a guide’s angle of rotation, choose Size
& Position from the Shape menu.

In a guide, the Guide Info section records the point around which a
guide rotates in the PinX and PinY cells and the angle of rotation.
(Earlier versions of Visio products do not include these cells but
display the GuidePosX, GuidePosY, and Type cells.) A shape that is
glued to a guide has an Alignment section, which refers to the guide
with a formula that includes the INTERSECTX or INTERSECTY func-
tion. (These functions are not available in Visio products previous to
version 5.0.)

You can use formulas to place a guide precisely on the page. For ex-
ample, in a drawing on standard A5 paper at a 1:500 scale, the page
width represents 74 meters. You can position the guide with respect
to page width with a formula such as:

PinX =ThePage!PageWidth-5m

Grouping guides with shapes
You can use guides or guide points to align shapes and groups as you
develop masters. For example, you can group a shape and a guide.
When you double-click the group, it opens in the group window,
where the guide appears. This makes it easy to add shapes to the group.

If a shape is glued to a guide and you add the shape (but not the
guide) to a group, Visio breaks the shape’s connection to the guide.
The reverse is also true: If you add a guide to a group, but don’t also
add the shapes that are glued to it, Visio breaks the shapes’ connec-
tions to that guide. If you include both the guide and the shapes that
are glued to it in the group, Visio maintains the connections.



Topics in this chapter

Packaging a shape solution ........................................................................ 176

Adding help to masters ............................................................................... 177

Developing solutions for different systems ................................................ 179

Testing masters ........................................................................................... 180

Finishing and testing a stencil .................................................................... 184

Finishing and testing a template ................................................................ 189

Installing stencils and templates ................................................................ 193

Protecting stencils and templates .............................................................. 194

9
Packaging stencils
and templates

Masters, stencils, and templates make up the package that a graphic
solution comes in. Not every solution requires all three, but your so-
lution may if it includes many new or customized shapes and you
plan to distribute them to users. In addition, you can include your
own help files to assist your users. Before you distribute your masters,
stencils, and templates to others, it’s important to test them thor-
oughly. Only by testing can you ensure that every component of your
Visio solution is easy for users to understand and use.

This chapter explains how to put the finishing touches on shapes,
stencils, and templates. It also describes how to add shape help and
includes detailed lists for testing your work based on the method used
by the Visio quality assurance staff.



1 7 6 C  H  A  P  T  E  R    9

Packaging a shape solution

If you are taking the time to develop your own shapes, you probably
plan to reuse them or distribute them in stencils and templates for
others to use. The goal of good shape design is to create shapes that
work the way users expect them to. Like any creative work, develop-
ing shapes is an iterative process that benefits from experimentation
and review.

To ensure a professional shape solution, consider following this de-
sign process:

1. Make notes about a shape’s intended function. What require-
ments must it satisfy? How must it behave in order to meet those
requirements? If the shape will be one of a collection in a stencil,
how must it behave to be consistent with other shapes?

2. Draw a prototype of the shape and format it to look the way
you want, and then experiment with the shape using the Visio
drawing tools. How does the shape behave when you move it?
Size it? Rotate it? Group it with other shapes? What happens
when you lock parts of the shape? Which behaviors do you want
to change?

3. Identify the ShapeSheet cells that influence the behavior you
want to change. Which cells need custom formulas, and which
cells should the formulas refer to?

4. Create one formula at a time and check its effect on the shape’s
behavior. Keep notes as you go, either on paper or in text blocks
on the drawing that contains your prototype shape. If you’re
trying different alternatives, you may want to copy the shape
each time you try something new and keep the copies so you
can return to an earlier version if you need to.

5. Write shape help, so your users will understand the shape’s
intended function.

6. Test the shape for usability by giving it to coworkers to see if the
shape meets their expectations as well as your own.

When you know exactly what you want the shape to look like, how
you want it to behave, and what formulas you need to accomplish
what you want, re-create the shape from the beginning. This may
seem like unnecessary work, but it’s the best way to ensure that no
obsolete formulas remain in ShapeSheet cells and that the shape itself
is drawn and formatted cleanly.

Copyright information

The stencils, masters, templates, and
source code provided with Visio products
are copyrighted material, owned by Visio
Corporation and protected by United States
copyright laws and international treaty
provisions. You cannot distribute any
copyrighted master provided with any Visio
product, unless your user already has a
licensed copy of a Visio product that in-
cludes that master. This includes shapes
you create by modifying or deriving shapes
from copyrighted masters.

To copyright your own shapes, use the
Special command on the Format menu.

Add this information as a final step. Once
you have entered copyright information in
the Special dialog box, it cannot be
changed.

If you create a shape based on a Visio
shape, you cannot copyright it.



P A C K A G I N G   S T E N C I L S   A N D   T E M P L A T E S 177

Adding help to masters

You can provide online help that displays general guidelines for using
the masters in a stencil or the subtleties of a shape’s behavior. This
section assumes that you are familiar with the techniques and termi-
nology used in creating Windows online help files. For details, see the
documentation that comes with the Microsoft Platform Software De-
velopment Kit (SDK) for Windows 95 and Windows NT, versions
3.51 and 4.0.

Associating help with a master
You can associate help with any shape in a drawing, but typically
you’ll associate help with masters in a stencil. A user displays shape
help by choosing the Shape Help command from the Help menu or
from the shape’s or master’s shortcut menu.

Visio locates a shape help topic using the context ID number that is
specified in the .HPJ file used to compile the .HLP file. To associate a
particular help topic with a shape, you must provide the context ID
number for that topic.

To associate help with a master on a stencil:

1. Open the stencil as an original, so you can edit its masters.

For details about opening stencils, see “Creating masters and
stencils” in Chapter 2, “Tools for creating solutions.”

2. Double-click a master to open its drawing window, then select
the shape.

3. From the Format menu, choose Special.

4. In the Help box, use the following syntax to enter the help file
name and keyword:

filename.hlp!#n

Filename.hlp is the name of your help file, and n is the context ID
number defined for the topic you want to associate with this
shape. For example, SHAPE.HLP!#63.

If you want to display the contents topic of your help file, do not
specify a context ID number. Use the syntax:

filename.hlp

5. Click OK.

Tips for writing shape help

Well-written shape help can give your users
the key to working successfully with your
shapes. At Visio, shape help explains how to
use a shape and, for unusual shapes, why
you use them.

If you provide help for one shape, you
should provide it for all the shapes on the
same stencil so that when users choose the
Shape Help command, they get a consistent
response. However, you don’t have to pro-
vide a unique help topic for each shape. You
can display unique topics for the more com-
plicated shapes and display a general help
topic for the rest of the shapes on a stencil.

Here are some tips for developing more
effective shape help:

• Keep word count to fewer than 75 words
if possible. Shape help is intended to be
quick, to-the-point instruction.

• If necessary, use graphics to illustrate
what a shape does, rather than more
words to describe it.

• Be consistent: Use the same tone, for-
matting, and look in your help topics.
Using a consistent approach makes writ-
ing go more quickly and clarifies your
intent to users.



1 7 8 C  H  A  P  T  E  R    9

When a user chooses the Shape Help command, the indicated topic
appears in a pop-up window that is not linked to a parent help sys-
tem. If you do not define a shape help topic for a shape, the Shape
Help command is dimmed on the menu.

NOTE  Pressing F1 always displays the Visio online help, not a particu-
lar shape topic.

Installing the shape help file
For Visio to find your help file, you must place it in the correct folder.
By default, Visio first looks for a shape help file in the default folder
for help files (usually the \HELP folder). You can change the default
folder by changing the HelpPath setting in the VISIO.INI file. This set-
ting determines the path that appears in the File Paths dialog box,
which you can edit for a document by choosing Options from the
Tools menu, then clicking the File Paths tab.

If Visio doesn’t find the help file you specify in the \HELP folder, it
looks in the folder that contains the Visio program files. If Visio can-
not find the help file in either folder, it displays the contents topic of
the Visio online help.

Testing shape help
Make sure your shape help is as thoughtfully designed as the shape
itself. Test the help and its jumps for consistency and accuracy.

To test shape help:

1. Right-click a master on the stencil, or create an instance of the
shape, then right-click the instance. Choose Shape Help and
check that the correct help topic appears.

2. Create another instance of the shape, point to the instance, and
click the right mouse button. Choose Shape Help from the pop-
up menu and check to be sure that the correct help topic appears.

3. Test all jumps to make sure they display the correct topics.

4. Check each topic for spelling, grammar, consistency, and accu-
racy of its content.



P A C K A G I N G   S T E N C I L S   A N D   T E M P L A T E S 179

Developing solutions for different systems

What works on your system may not work as well on someone else’s.
Not all Windows installations are exactly alike. You can design more
usable shapes, stencils, and templates for others to use if you know
your users’ hardware configurations. Even if you create shapes only
for your own use, knowing the characteristics of your computer envi-
ronment will save time by helping you create shapes that work the
first time.

On any given system, the speed of the processor, the amount of
memory, and the availability of a math coprocessor affects the usabil-
ity of your stencils and templates. Shapes with many complex
formulas recalculate and redraw more slowly than simple shapes, and
they take up more disk space. Be sure to test your stencils on all the
systems your users may have, including portable computers.

Designing for different video systems
When designing your stencils and templates for distribution, take
into account the color capabilities and resolutions of different video
systems. If you design for the system with the lowest resolution and
fewest colors, chances are that your layouts and shapes will appear
even better on more sophisticated systems. However, a stencil de-
signed for higher resolution or more colors probably won’t look as
good on a less sophisticated system.

The color capabilities of a video system may determine how you use
color in your shapes. For example, some video systems have difficulty
displaying dithered colors or colored patterned lines, which Visio
uses to differentiate different types of shapes.

If you develop stencils and templates on a system with higher resolu-
tion, you have more screen area in which to arrange icons in stencils
and more space for master prompts. In addition, Visio can display
more buttons on the toolbar at higher screen resolutions. Because
toolbar buttons are measured in pixels, a button appears smaller at a
higher resolution and more buttons can fit on the toolbar. The
VISIO.INI file includes settings that can help if you are designing sten-
cils for systems other than standard VGA. For details, see VISINI.TXT

in the \DVS folder.

Enhancing shape performance

You can design shapes that perform more
efficiently on different systems by using
some of the following techniques:

• Combine, rather than group, parts of a
shape.

• If you must use a group, keep the number
and level of groups to a minimum to re-
duce the number of ShapeSheet
interfaces, too many of which can slow
performance and add to the file size.

• Group or combine component shapes
that make up one master.

• Convert shapes with complex graphic
detail, such as clip art, to a Windows
metafile (.WMF). This conversion can re-
duce the file size and make the shapes
appear faster.

• Convert objects from other applications
from which you want to create masters
into Visio shapes. Their performance as
masters will be more reliable.

• Format shapes using styles rather than
local formatting so the shapes take up
less disk space and respond faster to
user actions. Also, if possible, use fewer
colors and fill patterns.

• Minimize the number of interdependen-
cies between ShapeSheet formulas you
write.



1 8 0 C  H  A  P  T  E  R    9

Designing shapes that print well
To design shapes that your users can print, you need to know the ca-
pabilities and limitations of their output devices. Do your users have
a vector-based device, such as a pen plotter, or a raster-based one,
such as a laser printer? Does the output device support monochrome,
grayscale, or color? What is its resolution? Do you have to support
more than one output device?

Some output devices can’t print all of the fills that Visio provides, and
others have difficulty printing shapes with multiple Geometry sec-
tions. You should test your shapes by printing them on the output
device you expect your users to have to make sure the lines and fills
look the way you want.

Testing masters

You should test all the masters on a stencil together for consistency,
and then test each master individually. After performing the follow-
ing tests, spend a few minutes to construct the kind of diagram or
chart the shapes are intended to produce. This is the best way to
evaluate their interaction, accuracy, and usefulness and to discover
limitations or missing elements.

Checking the consistency of masters
You need to ensure that a stencil contains all the masters it should,
that the names and formats are understandable, and that the icons
appear in a predictable order on the stencil. If you have a written
specification for master standards, be sure to check each shape
against the specification.

To check the consistency of masters on a stencil, open the stencil file
as Original, and then verify the following:

• The expected number of masters are on the stencil. Verify this
number against the specification, if you have one. If the stencil
is later modified and you test it again, you will know whether
masters have been added or removed.

• The master name and prompt have correct spelling, punctuation,
capitalization, grammar, content, and spacing, and they are
consistent with other shapes.



P A C K A G I N G   S T E N C I L S   A N D   T E M P L A T E S 181

• No trailing spaces exist in the master name that would cause
highlighting to extend farther than necessary when the icon is
selected. To check, choose Select All from the Edit menu.

• Names are aligned in the same way for each master on the stencil.

• Icons are arranged logically, aligned consistently, and appear in
order from left to right, top to bottom.

• Icons are set to the correct size. Normal is the most commonly
used setting.

• Each icon is a meaningful representation of its master. Visually
inspect each icon for clarity, and compare the icon to the master
itself. To check, select the icon and then choose Update Icon from
the Master menu. You’ll see a miniature of the master on the icon.
Then choose Undo to see the icon again.

• Icons with a custom graphic are set to update manually. To check,
choose Properties from the Master menu.

Checking the master in
the master drawing window
To test a shape in the master drawing window, open the stencil file as
Original. In the stencil window, double-click a master icon to open it
in the master drawing window, and then verify the following:

• The shape uses the appropriate scale. To check this, choose
Drawing Page from the Edit menu, then choose Master Properties.

• The shape is 1-D or 2-D, as appropriate. To check, choose
Behavior from the Format menu.

• The information about the master that appears in the Special
dialog box is correct. For example, the Data fields are filled out,
and the shape is linked to shape-specific help. To check, choose
Special from the Format menu.

• The appropriate Protection options are set. If you aren’t sure,
display the master’s ShapeSheet window or the Protection dialog
box to verify the Protection settings.

• Connection points are visible.

• The shape is the expected size. This is important if the shape
must work with other shapes or if the name or prompt indicates
that the shape is a specific size.



1 8 2 C  H  A  P  T  E  R    9

Testing the master scale
Because a stencil and a drawing page are opened with each template
you provide, you should test each shape on all of the different page
scales that it is intended to work with. It’s also helpful to test a shape
on a page with a very different scale.

To test a shape in a drawing of the same scale:

1. From the File menu, choose Open.

2. Under File Name, select a template file containing a stencil with
masters to test and a drawing page that uses the same scale as the
masters.

3. Under Open, select Read Only, and then click OK.

4. Drag a master onto the drawing page to create the instance to
test.

5. Verify the following:

• The shape is aligned appropriately within its alignment box as
you drag it. To see this, pause during dragging until you can see
a representation of the shape.

• The shape and the alignment box snap to the grid.

• The prompt and shape-specific help provide useful information
about the shape.

• The instance snaps to other shapes and to the grid or guides as
expected.

• The shape’s text box appears in the correct place, and text you
type in it wraps and aligns appropriately.

• The shape and its text act as you expect when you apply a fill
style.

• The shape and its text act as you expect when you resize the shape
vertically, horizontally, and proportionately. This test is particu-
larly important if you have programmed the shape to resize in a
unique way—for example, in only one direction.

• The shape and its text act as you expect when you rotate the
shape using the Rotate Left and Rotate Right commands and the
rotation tool.

• The shape and its text act as you expect when you reverse ends
and flip the shape vertically and horizontally.



P A C K A G I N G   S T E N C I L S   A N D   T E M P L A T E S 183

• The Special dialog box contains appropriate information. To
check, choose Special from the Format menu.

• The shape behaves as expected when connected to other shapes.
For example, a connector shape uses the appropriate glue type.

• The shape acts as you expect when you double-click it. You may
also want to check the setting by choosing the Double-Click
command from the Format menu.

• The shape and its text act as you expect when you ungroup the
shape. If the master is not a group, the Ungroup command is
dimmed.

• The shape looks the way you expect it to when you print it on
both PCL and PostScript printers. Some fill patterns affect
performance on PostScript printers.

• If the shape has customized actions on its shortcut menu, they
work as intended. To check, right-click the shape, then choose the
Action command.

• If the shape has custom properties, they appear as expected. To
check, choose Custom Properties from the Shape menu.

• The shape can be deleted.

To test a shape in a drawing of a different scale:

1. Create a new drawing page with a much different scale than the
shape you want to test.

For example, if the master was created at a scale of 1:1, create a
drawing page with a scale of 1/4 inch = 1 foot.

2. Drag a master onto the drawing page to create the instance to
test.

3. Verify the following:

• The shape is aligned appropriately within its alignment box as
you drag it. To see this, pause during dragging until you can see
a representation of the shape.

• The shape and the alignment box snap to the grid.

• The shape and its text act as you expect when you resize the shape
vertically, horizontally, and proportionately.

• The shape and its text act as you expect when you rotate the
shape using the Rotate Left and Rotate Right commands and the
rotation tool.



1 8 4 C  H  A  P  T  E  R    9

Finishing and testing a stencil

A standalone stencil is a Visio file with the extension .VSS that con-
tains the masters users can drag into a drawing window. Masters are
represented in a stencil by icons that you can design. In general, when
you want to prepare a stencil for distribution, you:

1. Create or open a stencil file.

2. Save shapes as masters on the stencil.

3. Name the masters.

4. Create the master icons.

5. Clean up the file to optimize performance.

6. Test the stencil.

This section describes the final tasks: how to add master names and
icons, optimize the stencil file, and then test it. For details about
opening stencil files and adding masters, see “Creating masters and
stencils” in Chapter 2, “Tools for creating solutions.”

Cleaning up masters in a stencil
The stencils you create will be easier to use if the masters look as if
they belong together and each conveys the corresponding shape’s
purpose. You can edit the master name and icon to make your mas-
ters easier for users to identify. You can also add a prompt that
appears in the Visio status bar to explain the master’s purpose.

By default, a master’s name is the identifier that Visio assigns, and its
icon is a miniature version of the master. When you edit a new mas-
ter, the icon is updated to reflect the shape you draw unless you
specify otherwise.

To help users identify your master, you can design a custom image for its icon.

Window
master icon

About master icons

At Visio, we standardize the border of the
icons in our stencils and use color to indi-
cate a shape with special attributes. Icons
with yellow backgrounds are usually 1-D
masters that work well as connectors. Red
crosses indicate connection points. Light
gray or blue-green backgrounds usually in-
dicate 2-D shapes. Future stencil sets might
use different standards, but icons in a sten-
cil set will always have the same “look.”

In addition, we avoid adding words to icons
or shapes. Because we ship our stencils to
many countries, any text in an icon or shape
would need to be translated, an expensive
and time-consuming task. Instead, we try to
use generic text like “ABC” instead of
words when text is needed.

Window shape as it appears in
the drawing window



P A C K A G I N G   S T E N C I L S   A N D   T E M P L A T E S 185

To specify a master name and prompt:

1. In the stencil window, right-click a master, then choose
Properties from the shortcut menu.

The stencil must be opened as Original.

2. Under Master Name, type a name for the master.

If you want the master name to be aligned beneath the icon in
some fashion other than centered, select an Align option.

3. Under Prompt, type the text you want to appear in the status bar
when the user points to the icon.

4. Under Icon, select the properties you want, then click OK.

To create a custom master icon:

1. In the stencil window, right-click a master, then choose Edit Icon.

2. Use the drawing tools in the icon editing window to edit the icon
or create a new design.

For details about using the drawing tools in the icon editing
window, search online help for “edit icon window.”

4. When you are finished, close the icon editing window.

5. To protect your new icon from accidental changes, choose
Properties from the Master menu. Under Icon, select Manual
for Update.

The icon editing window

Click the left mouse button
to apply this color.

Click the right mouse button
to apply this color.

Editing tools

Stencil back-
ground color

Color palette



1 8 6 C  H  A  P  T  E  R    9

Cleaning up a stencil file
Before you save a finished stencil, you should perform the following
cleanup tasks to enhance performance:

• Arrange the icons in the stencil windows to ensure that they
appear onscreen in order from left to right, top to bottom, when
the file is opened.

• Include file summary information for the stencil. To do so, make
the stencil window active, then choose Properties from the File
menu.

• To save file space, make sure your stencil file contains only the
required single drawing page and that there are no shapes on it.

• Delete any styles from the drawing page that are not used by the
masters in the stencil. A stencil file should contain only masters
and their styles.

• Verify that the style definitions in a stencil match those for styles
of the same name in any templates that open the stencil. For
details, see Chapter 7, “Managing styles, formats, and colors.”

• Use the Save As command to save your stencil file, and make sure
that Workspace is unchecked in the dialog box. A stencil’s
workspace list should be empty.

Making your stencils easy to use

Stencil users expect the shapes in a stencil to work together. They
expect that masters, stencils, and templates will behave in similar
ways, and that these items will be presented in a consistent fashion.
Inexperienced and nontechnical software users infer a great deal
from the differences in spacing and tone of the text that they see in
a software product.

Much of what gives a user the impression of consistency is atten-
tion to detail. Details that might seem trivial, such as capitalization
of master names, prompts, and file summary information, can often
make a big difference to the people using your shapes. Like good
shape design, many of these details are felt rather than consciously
noticed by the user.

You can make the masters in your stencils more consistent and
easier to use if you:

• Use conventions for master names.

• Include master prompts.

• Carefully name stencils and templates to help users identify
them.

• Fill in file properties for stencils and templates.

• Use the same style names in both the drawing file and sten-
cils associated with a template—but make sure that the
styles’ definitions are the same.

• Ensure that shapes in your stencil are compatible with your
template’s grid.

• Make sure that the drawing scales of templates you provide
match the scales used in your masters.

• Standardize the appearance of your stencil’s master icons to
indicate a master’s use and behavior.



P A C K A G I N G   S T E N C I L S   A N D   T E M P L A T E S 187

Testing stencils
You test stencils by reviewing the Open dialog box information and
by reviewing the stencil opened as Original, Copy, and Read Only.

NOTE  To protect your original stencil, create a copy that contains the
shapes you want to test, then use the copy for testing. After you test,
incorporate changes in the original stencil, and then make a new copy
for additional testing.

To test the information in the Open dialog box:

1. From the File menu, choose Open.

2. Under File Name, select a stencil file.

3. Verify the following:

• The default Open setting is Read Only.

• Under Description, a title and description should appear. If they
don’t, be sure to add these later to the original file using the
Properties command on the File menu.

To test the original version of a stencil, open the stencil file as
Original, and then verify the following:

• The file opens with its name displayed correctly in the title bar.
For example, the name should look like this: BASIC.VSS.

• The stencil window occupies the left quarter of the screen.

• File property information is filled out. To check, choose Proper-
ties from the File menu and verify the spelling, grammar, content,
spacing, capitalization, and punctuation.



1 8 8 C  H  A  P  T  E  R    9

To test a copy of a stencil, open a stencil file as a Copy, and then verify
the following:

• The file opens with a generic name, such as STENCIL1.

• File property information is blank except for the Author box,
which displays the user name specified in the Options dialog box
(Tools menu) or when Visio was installed on the computer.

To test the read-only version of a stencil, close all other files, open the
stencil file as Read Only, and then verify the following:

• The stencil opens in a docked window.

• The file name in the title bar appears in braces.

• On the File menu, the Save command is dimmed.

• On the Edit menu, the Cut, Clear, Paste, and Duplicate com-
mands are dimmed.

• On the Master menu, all commands are dimmed.

If your stencil includes online help for shapes, test the help. For
details, see “Testing shape help” earlier in this chapter.



P A C K A G I N G   S T E N C I L S   A N D   T E M P L A T E S 189

Finishing and testing a template

A template is a convenient way to open a stencil and store macros,
styles, a color palette, and page properties. When a user creates a new
document that is based on your template, the stencil and drawing
windows appear exactly as you specify. If the template’s drawing page
has standard elements, such as a title block or border, those elements
appear in an untitled drawing.

To create a template, you can open a new .VST file or save an existing
drawing, stencil, or template as a .VST file. A template can include:

• One or more stencil files, which are not stored in the template but
are opened when you open a new drawing file with the template.
Each stencil must be named and saved as a .VSS file before you
can save the template.

• One or more drawing pages, including backgrounds. Each page
can contain a drawing that uses a unique size and scale.

• Additional drawing (.VSD) files, which open as originals when the
template is opened. Each drawing file must be named and saved
as a .VSD file before you can save the template.

• Print settings.

• Styles for line, text, and fill.

• Snap and glue settings.

• A color palette.

• VBA modules, class modules, and user forms.

• A workspace list with information about the size and position of
each open window.

For details about opening a file as a template, see “Creating templates”
in Chapter 2, “Tools for creating solutions.”



1 9 0 C  H  A  P  T  E  R    9

Cleaning up a template
When you save a template, you should ensure that the workspace list
contains only the files you want to be opened, that all the windows
are in appropriate positions, and that any window you want to be
minimized is minimized. You create a workspace for a template by
checking the Workspace box in the Save As dialog box, then saving
the template file. After that, unless you uncheck the Workspace box,
Visio updates a template’s workspace list each time the original file is
saved—adding files that happen to be open and eliminating files that
happen to be closed.

Before saving the template for distribution, clean up the windows and
workspace as follows:

• Delete unnecessary masters from the template’s local stencil so
that users’ files don’t become any larger than they have to be. To
do this, activate the drawing window, then choose Show Master
Shapes from the Window menu. Delete only those instances that
are not present in any of the drawings in the drawing file.

• Include summary information for the template.

• Make sure the size of windows and stencils looks good on
different systems. To do this, open the template on a system with
the display resolution your users are most likely to have and use
the Tile command to help position windows correctly. Be sure to
open the template on systems with different display resolutions to
ensure that the window positions still work.

• Make sure the template’s color palette matches that of any stencils
that open with the template. For details, see “Managing color in
styles, shapes, and files” in Chapter 7, “Managing styles, formats,
and colors.”

• Verify that the style definitions in the template’s drawing page
match the definitions for styles of the same name in the stencils.
For details, see “Using styles in stencils and templates” in Chap-
ter 7, “Managing styles, formats, and colors.”

If you create a template by saving an existing Visio file as a new .VST

file, the new template may inherit an irrelevant workspace list. Be
sure to test your template to make sure its workspace list opens the
files and windows you want before you release the template to users.



P A C K A G I N G   S T E N C I L S   A N D   T E M P L A T E S 191

Testing templates
To test a template, you need to verify the information about the tem-
plate that appears in the Open dialog box, and then test how the
template acts when it is opened as Original, Copy, or Read Only.

NOTE  To protect your original template, create a copy that contains
the shapes you want to test, then use the copy for testing. After you
test, incorporate changes in the original template, and then make a
new copy for additional testing.

To test the information in the Open dialog box:

1. From the File menu, choose Open.

2. Under File Name, select a template file.

3. Verify that a title and description appear under Description.

If they don’t, be sure to add these later to the original file using
the Properties command on the File menu.

To test the original version of a template, open the template file as an
original, and then verify the following:

• The file opens with its name displayed correctly in the title bar.
For example, if the template file is ORGANIZATION CHART.VST,
the name in the title bar should look like this:

Organization Chart.vst

• All stencil (.VSS) files associated with the template open as read-
only, unless intended to open as original files.

• The drawing page window opens in Whole Page view, unless you
explicitly specify another option. (Whole Page view is the best
option for most monitors.)

• The stencil and drawing windows are positioned correctly.
Choosing Tile from the Window menu verifies their positions,
unless you have already repositioned the windows during the
current work session.

• The template includes the correct number of pages. To check,
from the Edit menu, choose Go To, then choose Page to display
the Page dialog box. Templates should have only one page unless
you have intentionally created additional pages.

• The content of each page (including each background) is correct.



1 9 2 C  H  A  P  T  E  R    9

• Nothing unintentional appears on the pasteboard (the blue area
outside the drawing page). To check, display each page at 5%
magnification. To ensure all the shapes are visible, choose Select
All from the Edit menu.

• Each page scale is compatible with the shapes intended for use
with the template. To check, for each page, choose Page Setup
from the File menu, then click the Page Properties tab.

• The page size corresponds to the page orientation used for
printing. Unless you specifically want pages to tile when they are
printed, the settings should correspond as follows: If the page size
is taller than it is wide, the orientation should be portrait. If the
page size is wider than it is tall, the orientation should be land-
scape.

• No masters remain on the local stencil, unless you have created
a form on the template’s drawing page, in which case no other
masters should appear. To check, choose Show Master Shapes
from the Window menu.

• File property information is filled out. To check, choose Proper-
ties from the File menu and verify the spelling, grammar, content,
spacing, capitalization, and punctuation.

• The template settings for each page are as expected. To check,
from the Tools menu, choose the Options, Snap & Glue, and
Ruler & Grid commands. From the File menu, choose Page Setup,
and then click the Page Size, Drawing Scale, and Page Properties
tabs. Check the style lists on the toolbar.

• The template display options are set appropriately: rulers, grid,
guides, connection points, toolbar, and status bar.

To test a copy of a template, open the template file as a copy, and then
verify the following:

• The file opens with a drawing page name that looks like this:
Drawing1:Page 1. Verify that the drawing page and any pages you
have added look the way you expect them to.

• All stencil files (.VSS) associated with the template open as read-
only.

• File properties are blank except for the Author box, which
displays the user name specified in the Options dialog box (Tools
menu) or when Visio was installed on the computer.



P A C K A G I N G   S T E N C I L S   A N D   T E M P L A T E S 193

To test the read-only version of a template, open the template file as
read-only, and then verify the following:

• The file name in the drawing window title bar appears in braces
and starts with the template name.

• On the File menu, the Save command is dimmed.

Installing stencils and templates

For Visio to find your stencil and template files, as well as any add-ons
intended to work with them, place them in the \SOLUTIONS folder.
You can add folders to this folder so that your solutions appear in the
File menu when a user chooses New or Stencils.

If you want to install your stencil and template files elsewhere, you
can change the default folder where Visio searches for files. To do this,
choose Options from the Tools menu, then click the File Paths tab. In
the File Paths dialog box, you can specify the default path you want.

The file name for each stencil and drawing that opens with a template
is stored in the template’s workspace list as a fully qualified path and
name. Problems can arise when files are moved to different machines
where local or network drives are configured differently. To prevent
some of these problems, Visio checks the path as follows:

1. When Visio is about to open a file from the workspace list, it first
examines the file’s stored path.

2. If the path is exactly the same as the stored path for the file that
contains the workspace list, Visio assumes that these files were
meant to be in the same folder.

3. Visio looks in the current folder of the workspace file for the
other file.

As long as you copy stencils and templates to the same folder when
you must move files, Visio can locate and open all the files in a
workspace list.



1 9 4 C  H  A  P  T  E  R    9

Protecting stencils and templates

The easiest way to protect stencils and templates from accidental
changes is to make the files read-only. If a stencil or template is read-
only, modifications cannot be saved to the file. When you create a
template, open the stencil files you want to include as read-only, and
then save the template. That way, Visio automatically opens the sten-
cils as read-only when a user opens the template.

When you use the Save or Save As command, you can check the
Read-Only option to save a Visio file with Windows read-only protec-
tion. If you save a file in this way, your users cannot open it as an
original, only as a copy.

Another way to protect a document is to use the Protect Document
command on the Tools menu. This command prevents a user from
changing any background pages in a template, all masters in a stencil,
all shapes on the drawing, and all styles in the template. If you enter a
password, a user must type the password before editing any of the
checked items. For details about the Protect Document command,
search online help for “protect document command.”



PART   I I I

Extending Visio with
Automation





Topics in this chapter

What is Automation? .................................................................................. 198

Planning an Automation solution with Visio .............................................. 199

10
Automation
and Visio

By now you’re familiar with Visio and the many possible uses of
SmartShapes symbols. You know how to design and build intelligent
shapes that can be used repeatedly to create complex and sophisti-
cated drawings. But perhaps you need to create or update a series of
drawings based on data that changes from day to day, or perhaps you
find yourself performing routine shape development tasks over and
over. Perhaps you may support a group of users who need to create
drawings but don’t need or want to become Visio experts, or you may
use their drawings as a means of collecting information. You can au-
tomate all of these tasks by using Automation to integrate the
graphics functionality of Visio with programs you write in Visual
Basic for Applications (VBA), Visual Basic, C/C++, or other
programming languages that support Automation.

This chapter introduces Automation and describes how a program
can use the objects exposed by an application such as Visio. It also
provides guidelines for planning an Automation solution that uses
Visio and discusses the methods for controlling Visio, such as VBA
macros written in Visio or external programs written in Visual Basic
or C/C++.



1 9 8 C  H  A  P  T  E  R    1  0

What is Automation?

Automation (formerly OLE Automation) is a means by which a pro-
gram written in VBA, Visual Basic, C/C++, or other programming
languages that support Automation can incorporate the functionality
of an application such as Visio, simply by using its objects.

If you’re familiar with Visual Basic, you use objects all the time—con-
trols such as command buttons, user forms, databases, and fields.
With Automation, you can use other applications’ objects as well—
which means you can use Visio drawings, masters, shapes, and other
Visio objects as components of your program.

Automation is like a common scripting language among applications
that support it. However, Automation takes a different approach to
controlling an application. Typically, a scripting language simply
automates the same actions you would perform in an application’s
user interface—choosing menu commands, pressing keys, typing,
and so forth.

With Automation, instead of programming an application’s actions,
you use its objects. An object encapsulates data, behavior, and events
with an interface that allows you to access the data, behavior, and
events. Each Visio object has properties (data), methods (behavior),
and events that you can use to take advantage of that object’s capa-
bilities in your program. Visio objects reside in an instance of
Visio—a VBA program runs within an instance of Visio and then ac-
cesses the objects it needs. An external program runs outside an
instance of Visio, so it starts Visio or accesses an instance of Visio that
is already running. Then it accesses the Visio objects it needs.

In Automation, the application that provides the objects—typically
called the provider application or Automation server—makes the objects
accessible to other applications and provides the properties and
methods that control them. (This is sometimes called exposing the
objects.)

The application (such as your program) that uses the objects—
typically called the controller application—creates instances of the
objects and then sets their properties or invokes their methods to
make the objects serve the application. The provider application and
controller application interact by making function calls through the
OLE libraries, which are installed when any application that supports
OLE—such as Visio, Visual Basic, or Windows—is installed.



A U T O M A T I O N   A N D   V I S I O 199

Planning an Automation solution with Visio

Typically, you’ll use Automation either to extend the functionality of
Visio or to include Visio as a graphics engine for your own programs.
The approach you take in designing your solution will depend on its
purpose and the context in which it will be run. You may use Visio to
create or update drawings based on data gathered elsewhere—either
from user input or from a database—or you may read drawings and
gather information from them. Or you may simply extend the behav-
ior of a shape with a VBA macro.

The first step in designing a Visio solution is to decide on the division
of labor—what Visio objects should do versus what the program
should do.

Start by building the shapes and putting as much of the functionality
as possible in ShapeSheet formulas. The most important thing to
remember is that shapes can be smart—you can use the intrinsic capa-
bilities of Visio shapes to handle much of the graphic functionality
that you’d otherwise have to code.

Another important thing to remember is that shapes are independent
of your program. Once you develop the masters your program will
use, you can change the shapes without having to recompile your
program, and vice versa.

Starting with smart shapes
If the shape behavior you want is predictable and can be accom-
plished with formulas, such as sizing or scaling, put it in the shape. If
the behavior changes dynamically at runtime—for example, the text
in a shape or the arrangement of shapes in a drawing may change—
handle that in the program. You can control the appearance and
behavior of shapes with great precision by setting shape formulas. If
you can create a stencil of masters to accompany your program, you
may not need to draw at all.

As you build masters for your program, test them in Visio by creating
the kinds of drawings you intend your program to create. This will
give you a good idea of the procedures you’ll need to code in the pro-
gram and the data you’ll need to provide. It will also show you if your
shape is working the way you expect.

Using a smart shape: an example

Suppose you want to draw a property line
based on surveyor’s measurements entered
in a dialog box. The line should have the ap-
propriate symbols and display the length of
each leg. You can put most of this function-
ality in a property line master. All your
program needs to do is prompt for the mea-
surements, calculate where each leg of the
property line should go, and drop the prop-
erty line master in the drawing at the
appropriate locations.



2 0 0 C  H  A  P  T  E  R    1  0

Providing a template
If your program is designed to create new Visio drawings, you
can save both programming effort and execution time by providing a
Visio template with your program or by storing your program as a
VBA macro in a template. A template can include styles and set up
drawing pages using a uniform grid and measurement system. A tem-
plate can provide shapes already on the drawing page and open one
or more stencils. For details about creating stencils and templates, see
Chapter 9, “Packaging stencils and templates.”

A template can also provide drawings with their own user interface
by including ActiveX controls such as command buttons and
text boxes, or custom controls that perform special tasks, with VBA
code that allows a user to interact with the drawing through the con-
trols. For details, see Chapter 18, “Using ActiveX controls in a Visio
solution.”

When a template is used to create a document, Visio copies the
template’s styles, document properties, and VBA macros, modules,
and user forms to the new document. You don’t need to set the docu-
ment properties or define styles from the program unless you want
them to be different from the template, nor do you need to separately
distribute a VBA program. For details about how to include VBA
macros, modules, and user forms in a template, see Chapter 2, “Tools
for creating solutions.”

NOTE  Using a template can also prevent some translation difficulties
if your program refers to styles and will be used with multiple
languages.

Handling the rest in the program
Once you’ve developed the master shapes and template (if your pro-
gram needs one), you can handle the rest of the functionality in your
program. Exactly what this entails will depend to a great extent on the
purpose of the program and the context in which it will be run. How-
ever, your program will typically handle the following:

Implementing the user interface. Most standalone programs will need
a dialog box, data entry form, or wizard screen to advise the user what
to do and prompt for any information the program needs to execute.

Providing a template: an example

Suppose you’re writing a program to create
scaled office plans. You can provide a tem-
plate such as OFFICE.VST, which includes a
scaled drawing page and opens one or
more stencils with office shapes. When you
use the template to create a document, the
scale is copied to new pages in the docu-
ment. To create drawings, your program or
users can drop master shapes from the
stencils.



A U T O M A T I O N   A N D   V I S I O 201

Storing and retrieving data. Shapes can have custom properties, which
can be configured to prompt the user to enter data or shape proper-
ties when, for example, a master is dropped on the drawing page.
However, to ensure correct types and protect data from unplanned
changes in Visio, you may want to handle data entry, storage, and re-
trieval in your program using an external database.

Placing shapes, setting their properties, or connecting them. If your
program creates a drawing, it will need to determine which masters to
drop and where to drop them, set the shapes’ text and apply styles,
and connect shapes. If your program reads drawings or works with
existing shapes, it will need to find the shapes, make sure they’re ap-
propriate for the program, and get and set shape properties and
formulas.

Remember that a shape can have formulas that resize or reorient it
appropriately when your program moves or resizes it—just as if you
moved or resized the shape yourself, using the mouse in Visio. If you
find yourself writing a lot of complex code that manipulates shapes,
take a step back and think about whether that functionality can be
handled by shape formulas.

VBA, Visual Basic, and C++

The Visio version 5.0 product line integrates VBA, a complete
development environment, into the Visio graphics environment.
This integration makes it easier than ever before to develop
custom business solutions with Visio by eliminating the need for a
separate development tool—all programming can be done within
Visio and written in the Visual Basic programming language.

Because these Visio products include the VBA development en-
vironment, the main focus of this book is on programming Visio
with VBA. Most example code in this book is written for the VBA
developer. For information about the VBA sample code on your
Visio 5.0 CD, see Chapter 11, “Using Visio objects.”

For information about how to use the VBA development environ-
ment within Visio, see Chapter 2, “Tools for creating solutions.”

For information about controlling Visio from a Visual Basic pro-
gram and the Visual Basic sample code on your Visio 5.0 CD, see
Chapter 19, “Programming Visio with Visual Basic.”

For information about controlling Visio from a C++ program, the
C++ sample code and functions on your Visio 5.0 CD, and about
writing a Visio library (VSL), see Chapter 20, “Programming Visio
with C++.”



2 0 2 C  H  A  P  T  E  R    1  0

Deciding upon a program
The kind of program you write depends on what you’re trying to do.
You may write a VBA macro in Visio or another Automation control-
ler application, or a standalone program in Visual Basic or C/C++.
You may write a special kind of dynamic-link library that runs with
Visio, called a Visio library (.VSL). Users may run your program from
Windows or from Visio, by choosing a command added to a Visio
menu, a button added to its toolbar, or even by double-clicking or
right-clicking a shape in a drawing. Or you may write a program that
runs when a certain event happens, such as when a document is
opened or created.

VBA, Visual Basic, or C/C++? If you’re using your program to extend
the Visio functionality and want your program to run within a Visio
instance, you might write a VBA macro in Visio. If Visio is the main
component in your solution, you might write a VBA macro in Visio
that controls Visio and other applications such as Microsoft Excel. If
you want to run your program from the Windows desktop or Win-
dows Explorer, you might write a standalone program in Visual Basic
or C/C++ that controls Visio and other applications that support
Automation.

Visual Basic hides many of the details involved in interfacing with
Automation, so it’s a lot easier to write Automation programs in VBA
or Visual Basic than in C/C++. It also takes less code to write VBA
macros than programs in Visual Basic or C/C++. However, C/C++
may be a better choice for some programs. For example, Visual Basic
allows you to create executable programs (.EXE), but if you want to
write a Visio library (.VSL), you must use C/C++.

VBA macro, add-on, or standalone program? If your program extends
Visio by adding functionality or creating special shapes, you’ll prob-
ably want to design it as a VBA macro or add-on. A VBA macro is a
procedure that takes no arguments and is contained within a module
within a project stored in a Visio template, stencil, or drawing. All
code is stored in the Visio file which, eliminates the need to distribute
a program separately—just distribute the Visio file. VBA macros are
faster than .EXE programs that use the same code because VBA mac-
ros run within the Visio task space. Keep in mind that storing VBA
macros in a Visio file increases file size. For information about lock-
ing a VBA project so users can’t inadvertently change the code, see
Chapter 2, “Tools for creating solutions.”

Migrating to VBA from Visual Basic

Because earlier versions of Visio do not
include the VBA development environment,
VBA macros written in Visio 4.5 and later are
not backward compatible. If you open a
Visio 4.5 or later document in Visio 4.0, the
VBA macros are not visible—they are still
stored in the file, even if you save the file in
Visio 4.0, but you cannot access them in
Visio 4.0.

If you are a Visual Basic developer who is
thinking about migrating to VBA from Visual
Basic, see “Migrating from Visual Basic to
VBA, in Chapter 19, “Programming Visio
with Visual Basic,” for details about issues
involved in making the transition.



A U T O M A T I O N   A N D   V I S I O 203

An add-on is similar to a standalone program, except that its .EXE or
.VSL file is installed in the Visio add-ons folder so that the program’s
name appears in the Macro submenu. An add-on is typically not in-
tended to be run from the Windows desktop or Windows Explorer.

To run a VBA macro, add-on, or standalone program, you can associ-
ate a program with a menu command or toolbar button that you add
to Visio, define an action for a shape’s shortcut menu or double-click
event, or respond to a document event, such as inserting pages or de-
leting shapes. For example, the Chart Shape Wizard handles a shape’s
double-click event by running itself so the user can edit the shape.
For details about programming events, see Chapter 4, “Enhancing
shape behavior,” and Chapter 15, “Handling events in Visio.” For de-
tails about adding menus and toolbar buttons, see Chapter 16,
“Customizing the Visio user interface.”

If your program uses Visio as a component in a solution that uses
other software, you may want to create a standalone executable pro-
gram that can be run from Windows Explorer. For example, Network
Diagrammer uses Visio to create a network diagram but doesn’t re-
quire Visio to be running until it actually starts drawing the diagram.
A standalone program must be an .EXE file. It may also be easier to fix
bugs in one standalone program or add-on than to fix bugs in a VBA
macro that may have been copied into multiple documents.

Executable program or Visio library? An executable program (.EXE)
can access and control Visio objects, but it can’t prevent the user from
taking independent action with either Visio or the program. You can
increase your program’s control and improve its performance by
writing the program as a .VSL, a Windows dynamic-link library that
implements a prescribed protocol for interacting with Visio. In addi-
tion, an .EXE file runs in a separate task space within Windows, which
means that there’s more overhead involved in calling a Visio method
or property than there is in calling the method or property from a
Visio library (.VSL) loaded into the Visio task space. This can affect
the program’s performance.



2 0 4 C  H  A  P  T  E  R    1  0

VBA macros, executable programs, and Visio libraries: a summary

Type of program Definition Reasons to use

VBA macro A procedure that takes no arguments; ••••• Easy to code; less code than standalone programs

(no separate file) written in the VBA development ••••• Fast; runs within the Visio task space

environment; macros are stored with- ••••• Easy to distribute; stored in Visio files

in modules stored within projects; ••••• Integrated; you don’t need a separate

projects are a collection of modules, development tool

class modules, and user forms; every

Visio file has a default project

Executable program A program that runs in its own ••••• Flexible; accessible from the Windows desktop

(.EXE) process; written in a programming or Windows Explorer; can operate as a

language that supports Automation standalone program or as a Visio add-on

••••• Separate; the program needs to run Visio

only when necessary

Visio library A dynamic-link library specifically ••••• Fast; runs within the Visio task space

(.VSL) written for Visio; written in C/C++



Topics in this chapter

The Visio object model ................................................................................ 206

Getting and releasing objects ..................................................................... 214

Using properties and methods .................................................................... 222

Using compound object references ............................................................ 224

Using the VBA files provided on your Visio 5.0 CD .................................... 225

Handling errors ............................................................................................ 226

11
Using Visio
objects

Using a Visio object is really a two-step process: First you get a refer-
ence to the object, then you use the object’s properties and methods
to do something. You usually get a reference to an object by getting a
property of an object higher in the Visio object model, which is the hi-
erarchy of objects that Visio exposes through Automation.

This chapter describes the objects that Visio exposes through
Automation and shows how to access them from a program. It briefly
covers the Visual Basic syntax for using objects, properties, and meth-
ods, describes the Visual Basic for Applications (VBA) sample code
and files provided in the DVS (Developing Visio Solutions) folder on
your Visio 5.0 CD, and offers suggestions for handling errors.

For details about how to use the VBA development environment, see
Chapter 2, “Tools for creating solutions,” or Microsoft Visual Basic
online help. For details about creating an external Visual Basic pro-
gram, see Chapter 19, “Programming Visio with Visual Basic.” For
comparable information about C++ syntax, see Chapter 20, “Pro-
gramming Visio with C++.”



2 0 6 C  H  A  P  T  E  R    1  1

The Visio object model

Global Application

ThisDocument

VBE

AddOns

AddOn

Fonts

Font

Styles

Style

Pages

Page

Selection

Masters

Master

Layers

Layer

Shapes

Shape

Documents

Document

Shapes

Shape

Cell

Characters

Colors

Color

Connects

Connect

Windows

Window

Connects

Connect

EventList

Event

4

VBProject

Toolbars

Toolbar

StatusBarItems

StatusBarItem

ToolbarItems

ToolbarItem

ToolbarSets

ToolbarSet

StatusBars

StatusBar

MenuItems

MenuItem

MenuItems

MenuItem

Menus

Menu

MenuSets

MenuSet

AccelItems

AccelItem

AccelTables

AccelTable

UI object

UI object

4

Shapes

Shape

Layers

Layer

Connects

Connect

1

2

3

5

6

1 The ThisDocument object is an
instance of a Document object
and is available only when using
VBA.

2 If the Shape object is a group, it
also has a Shapes collection.

3 If the MenuItem object is a
cascading menu, it also has a
MenuItems collection.

4 A UI object can represent menus
and accelerators or toolbars and
status bars. For details, see
Chapter 16, “Customizing the
Visio user interface.”

5 Many Visio objects have an
EventList collection. For details,
see the online Visio Automation
Reference.

6 The Visio global object is
available only when using VBA.

A black dashed line represents a
more direct method of accessing
an object by referencing it as a
property of the Visio global object.

Key

Collection

Object



U S I N G   V I S I O   O B J E C T S 207

The Visio object model represents the objects, properties, methods,
and events that Visio exposes through Automation. More important,
it describes how the objects are related to each other. Many of the ob-
jects are used primarily to access other objects. For example, you
probably won’t do as much with documents and pages as with shapes
and cells.

Most objects in the model correspond to items you can see and select
in Visio. For example, a Shape object can represent anything on a
Visio drawing page that you can select with the pointer tool—
a shape, a group, a guide, or an object from another application that
is linked, embedded, or imported into a Visio drawing.

Many Visio objects correspond to items you can see and select in Visio.

Some objects represent collections of other objects. A collection con-
tains zero or more objects of a specified type. For example, a
Document object represents one open document in an instance of
Visio; the Documents collection represents all of the documents that
are open in the instance. Collections are discussed in more detail later
in this chapter.

Online Automation references

You can find details about any Visio object,
its properties, its methods, and its events
in the online Visio Automation Reference.
To use the Visio Automation Reference,
choose Automation Reference from the
Visio Help menu.

You can find information about VBA pro-
gramming in Microsoft Visual Basic online
help. To use it, choose Microsoft Visual
Basic Help from the Help menu in the
Visual Basic Editor.

Application/global object

Document objects

Page object

Master object

Shape object

Selection object

Window objects



2 0 8 C  H  A  P  T  E  R    1  1

Accessing objects through properties
Most Visio objects have properties whose values refer to other ob-
jects. You use these properties to access the objects that you want to
control—starting with global properties such as Documents, Win-
dows, or ActivePage or starting with the ThisDocument object,
depending on what your program does. The Documents collection
represents all documents open within a Visio instance. The
ThisDocument object represents the Visio document associated with
your VBA project.

When you are running a VBA program within Visio, you don’t need
to start by creating or getting an Application object because you are
already running an instance of Visio. At least one document is
also open, so you can directly access the ActiveDocument, the
ActiveWindow, and the ActivePage global object properties, for ex-
ample. For a list of the Visio global object properties that you can
access directly, see the online Visio Automation Reference.

The Document or ThisDocument object has a Pages property that
refers to the Pages collection for that document, which you can use to
access a particular page. A Page object has a Shapes property that re-
fers to the Shapes collection for that page, which you can use to access
individual shapes.

Conversely, most objects have a property that refers to the object
above it in the hierarchy, such as the Document property of a Page
object.

There are often several paths to the same object. For example, to
access a particular document, you might use the Documents prop-
erty or the ActiveDocument property of the Visio global object, or
the Document property of a Window object. Which approach you
take depends on where you are and what you’re trying to do. Using a
property of the Visio global object is a more direct approach because
you don’t have to get references to as many objects.

Once you have a reference to an object, you can set and get the values
of its properties or use methods that cause the object to perform
actions.

Creating an application object

Earlier versions of Visio did not include the
VBA development environment, so pro-
grammers using Visual Basic to control
Visio started programming by getting or cre-
ating an object reference to the Application
object—the first object in the Visio object
model when writing external programs. For
details about getting or creating a Visio
Application object, see Chapter 19,
“Programming Visio with Visual Basic.”



U S I N G   V I S I O   O B J E C T S 209

Here is an example of a path of object references, starting with the
Documents collection, that gets a reference to the first shape on the
first page in the first open document in the Documents collection:

Dim docObj as Visio.Document

Dim pagsObj as Visio.Pages

Dim pagObj as Visio.Page

Dim shpsObj as Visio.Shapes

Dim shpObj as Visio.Shape

...

docObj = Documents.Item(1)

pagsObj = docObj.Pages

pagObj = pagsObj.Item(1)

shpsObj = pagObj.Shapes

shpObj = shpsObj.Item(1)

Getting a document name: an example
This simple VBA program displays the name of a document open in
an instance of Visio in a text field on a user form. To run this VBA
program, open the VBA Samples Template (VBA SAMPLES.VST),
choose Macro from the Tools menu, then DVS, and then
GetDocName. This program follows these steps:

1. Gets the first Document object from the collection.

2. Gets the Document object’s Name property.

3. Displays the value returned by the Name property in a text box
on a user form.

4. Sets the label text on the user form and displays the user form.

The code for this example is in \DVS\VBA SOLUTIONS\VBA SAMPLES.VST.



2 1 0 C  H  A  P  T  E  R    1  1

GetDocName macro in the DVS module in
\DVS\VBA SOLUTIONS\VBA SAMPLES.VST

Sub GetDocName ()

'Declare variables

Dim docObj as Visio.Document

Dim strDocName As String

'Get the first document in the Documents collection

Set docObj = Documents.Item(1)

'Get the current Document object's Name property

strDocName = docObj.Name

'Set the Text property of the text box to the document name

UserForm1.TextBox1.Text = strDocName

'Set the Label text and show the user form

UserForm1.Label1.Caption = "Document name:"

UserForm1.Show

End Sub

Displaying a document name in a text box

To see the sample code for a VBA program that iterates through a
Documents collection and gets the names of all documents open in
an instance of Visio, open the VBA Samples Template (VBA

SAMPLES.VST), then the DVS module, and view the GetAllDocNames
macro.

Creating a simple drawing: an example
Here’s a more elaborate program that creates a drawing. To run this
VBA program, open the VBA Samples Template (VBA SAMPLES.VST),
choose Macro from the Tools menu, then DVS, and then HelloWorld.
This program follows these steps:

Good programming techniques

This book uses the VBA default user form
and control names for clarity, but most
programmers change the default names
to something more descriptive. Many
programmers use the following naming
conventions:

User form default name = UserForm1
Revised name = frmGetDocName

Notice the use of frm in the revised name of
the user form. Many programmers use frm,
txt (textbox), lbl (label), cmd (command but-
ton), and so on in the control name so you
know what type of object it is at a glance.



U S I N G   V I S I O   O B J E C T S 211

1. Gets the first page in the Pages collection of the document
associated with the VBA project.

2. Gets the stencil (VBA SAMPLES.VSS) from the Documents collection.

3. Drops an instance of the Rectangle master from the stencil on the
drawing page.

4. Sets the text of the rectangle shape on the drawing page to
“Hello World!”

5. Saves the document.

The code for this example is also in \DVS\VBA SOLUTIONS\VBA

SAMPLES.VST. Notice that this example, unlike the previous one, actu-
ally creates objects in Visio, as opposed to just referring to objects that
already exist.

HelloWorld macro in the DVS module in \DVS\VBA SOLUTIONS\VBA SAMPLES.VST

Sub HelloWorld ()

'Object variables to be used in the program.

Dim stnObj As Visio.Document 'Stencil document that contains master

Dim mastObj As Visio.Master 'Master to drop

Dim pagsObj As Visio.Pages 'Pages collection of document

Dim pagObj As Visio.Page 'Page to work in

Dim shpObj As Visio.Shape 'Instance of master on page

'Get the first page in the document associated with the VBA program.

'A new document always has one page, whose index in the Pages collection is 1.

Set pagsObj = ThisDocument.Pages

Set pagObj = pagsObj.Item(1)

'Get the stencil from the documents collection and set the master shape.

Set stnObj = Documents("VBA Samples.vss")

Set mastObj = stnObj.Masters("Rectangle")

'Drop the rectangle in the approximate middle of an US letter page.

Set shpObj = pagObj.Drop(mastObj, 4.25, 5.5)

'Set the text of the rectangle.

shpObj.Text = "Hello World!"

'Save the drawing. The message pauses the program so you know the drawing is finished.

ThisDocument.SaveAs "hello.vsd"

MsgBox "Drawing finished!", , "Hello World!"

End Sub



2 1 2 C  H  A  P  T  E  R    1  1

The drawing created by this program looks something like this.

Hello World!

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

9
10

11

The drawing created by the Hello World program

Here are some notes on the code:

This program uses the Visio object types such as Visio.Document,
Visio.Master, Visio.Pages, Visio.Page, and Visio.Shape defined in the
Visio type library. Using Visio object types instead of the general
Object variable type increases the speed of your program.

Notice the use of object variables to hold references to the Visio ob-
jects used in the program. Each Set statement assigns an object
reference to an object variable, starting with the ThisDocument
object. Note the progression from ThisDocument object, to Pages
collection, to Page object.

Set pagsObj = ThisDocument.Pages uses the ThisDocument object,
which is equivalent to the specific Document object associated with a
VBA project. If you want to reference the Document object of the file
associated with your VBA project, you don’t need to get it from the
Documents collection; just begin by referencing the ThisDocument
object. The ThisDocument object is discussed later in this chapter.



U S I N G   V I S I O   O B J E C T S 213

Set stnObj = Documents("VBA Samples.vss") doesn’t reference an ob-
ject higher in the Visio object model preceding Documents.
Documents is a property of the Visio global object. The Visio global
object has properties and methods you can reference with no qualify-
ing object. The Visio global object is discussed later in this chapter.

Set shpObj = pagObj.Drop(mastObj, 4.25, 5.5) uses the Drop method
to drop a master on the page represented by pagObj. (Although you
can draw shapes from scratch from a program, dropping a master is a
far easier and more common technique.) The mastObj argument
specifies the master to drop; 4.25, 5.5 are the page coordinates of the
location to drop the pin (its center of rotation) of the new shape.
These coordinates are measured from the lower-left corner of the
drawing page in drawing units expressed as inches. The Drop method
returns a reference to a Shape object—the new rectangle—which is
assigned to the variable shpObj.

ShpObj.Text = "Hello World!" assigns the string “Hello World!” to the
Text property of the Shape object, which causes Visio to display that
string in the rectangle. This is similar to selecting a shape with the
pointer tool in a Visio drawing window and typing “Hello World!”

ThisDocument.SaveAs "hello.vsd" uses the SaveAs method to save the
ThisDocument object under the file name HELLO.VSD. Because no
folder path is specified, the document is saved in the working folder
(probably the folder that contains the program). The MsgBox state-
ment simply lets you know the drawing is finished. When you click
OK in the message box, the program finishes.



2 1 4 C  H  A  P  T  E  R    1  1

Getting and releasing objects

You get an object by declaring an object variable, getting a reference
to an object, and assigning the reference to the object variable. You
can then use the object variable to control the object.

Declaring object variables
A variable that stores a reference to a Visio object should be declared
as a Visio object type such as Visio.Page and Visio.Document as de-
fined in the Visio type library, or a variable can be declared as the
more general Object type. Using Visio object types will increase the
speed of your program. For details about Visio object types, see
Chapter 2, “Tools for creating solutions.”

Most programs have at least one object variable to store a reference to
the Page object, for example, that represents the Page that your pro-
gram will manipulate. You don’t have to assign other object
references to variables, but it’s almost always a good idea, especially if
your program refers to an object more than once. The objects you
reference depend on the purpose of your program.

You can declare a variable as local, module-level, or global. The scope
you choose depends on how you plan to use the variable in your pro-
gram. For complete details about declaring variables, see the
Microsoft Visual Basic online help.

NOTE  You can’t store the value of an object variable between program
executions. An object reference is like a pointer to a memory address:
Its value will probably be different every time the program executes.

Using the Visio global object
An external standalone program needs to obtain a reference to the
Application object by creating or getting it. When you are running a
VBA program, Visio is already running, so you don’t need to obtain a
reference to the Application object. Instead, Visio provides a global
object that represents the instance of Visio and provides more direct
access to certain properties. Properties of the Visio global object
aren’t prefixed with a reference to an object.

Possible object conflicts

This book uses the syntax Visio.Page to de-
fine Visio object types. You could eliminate
Visio. and just use Page, but be aware of
possible confusion or conflicts in object and
property names when programming with
other applications and Visio.

For example, other applications may have a
Document or Page object. Excel has a Cell
object, as does Visio, but the two objects
are different and cannot be used inter-
changeably.

You can decrease the possibility of conflicts
by using the syntax shown in this book,
which references the library type in object
variable declarations.



U S I N G   V I S I O   O B J E C T S 215

Global

Documents

Document

ActiveDocument

Windows

Window

Application

Addons

Addon

ActivePage

ActiveWindow

VBE

The Visio global object and its properties

The Application object is a property of the Visio global object, so you
can access any of the Application object’s properties by directly refer-
encing the Application property of the Visio global object.

Here are three examples of code that gets the first document in a
Documents collection, but all three use different syntax. The first ex-
ample creates an Application object—this code is used when writing
an external standalone program. The second example uses the Appli-
cation property of the Visio global object. The third example directly
accesses the Documents property of the Visio global object.

Example 1:

Dim appVisio as Visio.Application

Dim docsObj as Visio.Documents

Dim docObj as Visio.Document

Set appVisio = CreateObject("visio.application")

Set docsObj = appVisio.Documents

Set docObj = docsObj.Item(1)



2 1 6 C  H  A  P  T  E  R    1  1

Example 2:

Dim docsObj as Visio.Documents

Dim docObj as Visio.Document

Set docsObj = Application.Documents

Set docObj = docsObj.Item(1)

Example 3:

Dim docObj as Visio.Document

Set docObj = Documents.Item(1)

Notice in the second and third examples that Application and Docu-
ments are not preceded by an object. When you are referencing any
property or method of the Visio global object, you don’t need to de-
clare a variable for the global object or reference it as the preceding
object of a property—the global object is implied. The third example
is the most direct method of accessing the Documents collection. For
details about the Visio global object’s properties and methods, see the
online Visio Automation Reference.

Here are a couple more examples of code for commonly used proper-
ties of the Visio global object:

Set docObj = ActiveDocument

Set pagObj = ActivePage

Set winObj = ActiveWindow

NOTE  The Visio global object is not available when you are writing
external programs because you are not running your program within
an instance of Visio. VBA and other applications also have their own
global objects. When more than one type library has a global object
with the same name, VBA references the global object with the high-
est priority. For details about changing the priority of type libraries,
see Microsoft Visual Basic online help.

Using the ThisDocument object
The ThisDocument object is equivalent to the specific Document ob-
ject associated with a VBA project. Every file created with Visio 4.5
and later contains a ThisDocument object that has the same proper-
ties, methods, and events as a Document object; however, you don’t
have to set a reference to ThisDocument as you would with other
Visio objects.



U S I N G   V I S I O   O B J E C T S 217

If you want to manipulate a document, but not necessarily the docu-
ment associated with its VBA project, get the Document object from
the Documents collection. If you want to manipulate the document
associated with your VBA project, use the ThisDocument object.

For example, when referencing the document associated with your
VBA project, you could get the Document object from the Docu-
ments collection. The following example gets the first page of
HELLO.VSD, assuming HELLO.VSD is the document object associated
with your VBA project:

Dim docObj as Visio.Document

Dim pagObj as Visio.Page

Set docObj = Documents.Item("hello.vsd")

Set pagObj = docObj.Pages.Item(1)

Or you could just use the ThisDocument object as the following ex-
ample does:

Dim pagObj as Visio.Page

Set pagObj = ThisDocument.Pages.Item(1)

You can also add more properties and methods to the ThisDocument
object because it is an extensible object—an object whose functional-
ity you can extend. The ThisDocument object is the only extensible
object Visio provides.

For details about ThisDocument’s properties, methods, and events,
select the ThisDocument object in the Project Explorer, open the Ob-
ject Browser, view the Visio project containing ThisDocument in the
project list, and browse the members of ThisDocument.

You can also select ThisDocument in the Project Explorer and change
its properties, such as page settings, default styles; and document
properties such as title, creator, and subject, in the Properties
window.

Getting Visio objects
After you reference a Document or ThisDocument object, you re-
trieve other Visio objects by getting properties of the Document or
ThisDocument object, then of other objects in the object hierarchy.

ThisDocument object and related objects
in the Visio object model

Global

Documents

Document

ThisDocument

ActiveDocument



2 1 8 C  H  A  P  T  E  R    1  1

An object may have more than one property that refers to another
object. For example, the Visio global object has two properties you
can use to retrieve Document objects: ActiveDocument and Docu-
ments. The ActiveDocument property refers to a Document object
that represents the active document in an instance of Visio. To re-
trieve a Document object using the ActiveDocument property:

Dim docObj as Visio.Document

...

Set docObj = ActiveDocument

Referring to an object in a collection
A collection is an object that represents zero or more objects of a par-
ticular type. You can iterate through a collection to perform the same
operation on all of its objects, or get a reference to a particular object
in the collection. A collection differs from an array in that a given
object’s position is not fixed within its collection—its position may
change if another object is added or removed from the collection.

Each collection has two properties you can use to refer to objects in
the collection:

• Item returns a reference to an object in the collection. This is the
default property for any collection.

• Count returns the number of objects in the collection.

The Item property takes a numeric argument that represents the
object’s index, or ordinal position, within the collection. The first
item in most collections has an index of 1 (not 0). To get an object by
specifying its index, use code such as the following (where shpsObj
represents a Shapes collection):

Dim pagsObj as Visio.Pages

Dim pagObj as Visio.Page

Dim shpsObj as Visio.Shapes

Dim shpObj as Visio.Shape

...

Set pagsObj = ThisDocument.Pages

Set pagObj = pagsObj.Item(1)

Set shpsObj = pagObj.Shapes

Set shpObj = shpsObj.Item(1)

UI object collections

Unlike other Visio collections, the following
collections are indexed starting with 0
rather than 1:

• AccelTables • StatusBars
• AccelItems • StatusBarItems
• Colors • ToolbarSets
• MenuSets • Toolbars
• Menus • ToolbarItems
• MenuItems



U S I N G   V I S I O   O B J E C T S 219

Assuming there’s at least one shape on the page, this statement re-
turns a reference to the first Shape object in the Shapes collection. (If
the collection is empty, this statement causes an error. You may want
to check the Count property of a collection before using Item, to
make sure Count is not 0.)

Notice the Visio object type references—Visio.Pages represents a
Pages collection, and Visio.Page represents a page in the collection.

Pages

Page

Masters

Master

Shapes

Shape

Documents

Document

ThisDocument

Shape object and related objects higher in the Visio object model

For certain collections—Documents, Pages, Masters, Shapes, or
Styles—the Item property can also take a string argument that speci-
fies the object’s name, which can be more convenient than referring
to the object by its index. For example, the following code gets the
Master object named 2-D Double in the Masters collection of the
stencil document with which the VBA project is associated (using the
ThisDocument object):

Dim mastsObj as Visio.Masters

Dim mastObj as Visio.Master

...

Set mastsObj = ThisDocument.Masters

Set mastObj = mastsObj("2-D Double")

Most objects that belong to a collection have an Index property that
returns the object’s ordinal position within the collection to which it
belongs. For example, if a Document object’s Index property returns 5,
that Document object is the fifth member of its Documents collection.



2 2 0 C  H  A  P  T  E  R    1  1

Iterating through a collection
A collection’s Count property returns the number of objects in the
collection. If the Count property is 0, the collection is empty. For ex-
ample, the following statement displays the number of documents
that are open in an instance of Visio:

MsgBox "Open documents = " & Str$(Documents.Count)

Most often, you’ll use the Count property to set the limit for an itera-
tion loop. Notice the use of Count in the For statement of the
following example from \DVS\SAMPLE APPLICATIONS\STNDOC

\SELSTENC.FRM. The For loop iterates through a Documents collec-
tion, checking the last three characters of each Document object’s file
name. If the last three characters are VSS (indicating that the docu-
ment is a stencil), its name is added to the list in a combo box.

Set docs = appVisio.Documents

For i = 1 To Docs.Count

Set doc = Docs(i)

If UCase(Right(doc.Name, 3)) = "VSS" Then

ComboBox1.AddItem doc.FullName

End If

Next i

The code inside a loop such as the previous one should not change
the number of objects in the collection (for example, by adding or de-
leting objects). Otherwise, the value of Count changes after each
iteration of the loop.

To delete objects from a collection using a loop, decrement the
counter rather than incrementing it. Each time an item is deleted
from a collection, Count decreases by 1 and the remaining items shift
position, so an incrementing loop will skip items. Use a loop such as
the following instead:

Dim shpsObj as Visio.Shapes

...

For i = ActivePage.shpsObj.Count To 1 Step -1

shpsObj(i).Delete

Next i

Masters

Master

Documents

Document

ThisDocument

Master object and related objects
higher in the Visio object model



U S I N G   V I S I O   O B J E C T S 221

Releasing an object
An object in a program is automatically released when the program
finishes running or when all object variables that refer to that object
go out of scope. If an object variable is local to a procedure, it goes
out of scope as soon as that procedure finishes executing. If the object
variable is global, it persists until the program finishes executing, un-
less the object is explicitly released.

Releasing an object in a program does not affect the corresponding
object in Visio. For example, releasing a Document object does not
close the corresponding Visio document. The document remains
open, but the program no longer has access to it.

To release an object explicitly, set its object variable to the special
Visual Basic value Nothing. For example:

Dim docObj as Visio.Document

...

Set docObj = Nothing

If you assign the same object reference to more than one variable, be
sure to set each variable to Nothing when you release the object.

Don’t release an object until you’re finished using it. Once you release
the object, the program can no longer refer to the corresponding ob-
ject in Visio. For example, if you release a Document object, the
program can no longer manipulate that Visio document, so it is un-
able to save or close the document or retrieve other objects from it.

On the other hand, if an object reference becomes invalid, you may
have to release the object explicitly in your program. For example, if
the user closes the Visio document or deletes a shape, references to
those objects become invalid. Attempting to use any object variable
that contains an invalid object reference will cause an error.



2 2 2 C  H  A  P  T  E  R    1  1

Using properties and methods

Many properties refer to objects, and some methods return object
references. Other properties’ values are strings or numbers. For ex-
ample, the value of a Shape object’s Text property is a string—the text
displayed in the corresponding shape.

Declaring variables
for return values and arguments
For an object reference, declare an object variable and use a Set state-
ment to assign the reference to an object variable. For any other kind
of value, you can declare a variable with either an explicit data type or
Visual Basic’s Variant data type, and use a simple assignment state-
ment to assign the value to the variable.

When declaring variables for arguments to a property or method, the
same rules apply: Use object variables for objects, and use either the
Variant data type or the appropriate explicit data type for other kinds
of values.

Getting and setting properties
Properties often determine an object’s appearance. For example, the
following statement sets the Text property of a Shape object:

Dim shpObj as Visio.Shape

...

shpObj.Text = "Hello World!"

Read-only, write-only, and read/write properties

Most properties of Visio objects are read/write, which means
you can both get and set the property’s value. Certain properties
are read-only—you can get them, but you cannot set them. For
example, you can get the ApplicationApplicationApplicationApplicationApplication property of an object to
determine the instance of Visio that contains the object, but you
cannot set the Application  Application  Application  Application  Application property to transfer the object to a
different instance.

A few properties are write-only—you can only set their values.
Such properties usually handle a special case for a corresponding

read/write property. For example, you change the formula in a
cell by setting its Formula Formula Formula Formula Formula property, unless the formula is pro-
tected with the GUARD function. In that case, you must use the
FormulaForceFormulaForceFormulaForceFormulaForceFormulaForce property to set the formula. However, you cannot
get a cell’s formula by using FormulaForce FormulaForce FormulaForce FormulaForce FormulaForce; you must use
FormulaFormulaFormulaFormulaFormula, whether the cell’s formula is protected or not.

For details about properties and methods, including whether a
property is read/write, read-only, or write-only, see the online
Visio Automation Reference.



U S I N G   V I S I O   O B J E C T S 223

The following statement gets the text of this shape:

Dim shpObj as Visio.Shape

...

shpText = shpObj.Text

Some properties take arguments. For example, the Cells property of a
Shape object takes a string expression that specifies a particular cell in
the corresponding shape. When a property takes arguments, enclose
them in parentheses. For example, the following statement sets the
formula of the PinX cell.

Dim shpObj as Visio.Shape

...

shpObj.Cells("PinX").Formula = "4.25 in"

The following statement gets the formula of the PinX cell and stores it
in strPinX:

Dim shpObj as Visio.Shape

...

strPinX = shpObj.Cells("PinX").Formula

Using methods
Methods often correspond to Visio commands. For example, a Shape
object has a Copy method that performs the same action as selecting
the shape and choosing the Copy command from the Edit menu in
Visio. Other methods correspond to other actions. For example, a
Window object has an Activate method that you can use to make the
corresponding window active, which is the same as clicking that win-
dow with the mouse.

The syntax for using a method is similar to that for setting a property.
If a method creates an object, like a Page, the method returns a refer-
ence to the newly created object, as in the following example.
Methods that don’t create objects typically don’t return values.

Dim pagsObj as Visio.Pages

Dim pagObj as Visio.Page

...

Set pagObj = pagsObj.Add



2 2 4 C  H  A  P  T  E  R    1  1

Using an object’s default property
Most objects have a default property that is used if you don’t specify a
property when referring to that object. For example, the default prop-
erty of a Document object is Name, so the following two statements
return the same value:

docName = Documents(5).Name 'long format

docName = Documents(5) 'short format

The default property for any collection is Item, so you can use a state-
ment such as the following to specify an object from a collection:

Dim shpsObj as Visio.Shapes

Dim shpObj as Visio.Shape

...

Set shpObj = shpsObj.Item(1) 'long format

Set shpObj = shpsObj(1) 'short format

Using compound object references

You can concatenate Visio object references, properties, and methods
in single statements, as you can with VBA objects. However, simple
references are sometimes more efficient, even if they require more
lines of code.

For example, the following statement refers to the first shape on the
third page of the first open document in an instance of Visio:

Dim shpObj as Visio.Shape

...

Set shpObj = Documents(1).Pages(3).Shapes(1)

Executing this statement retrieves one object—the Shape object as-
signed to shpObj. Compare the following series of statements that use
simple object references:

Set docObj = Documents(1)

Set pagsObj = docObj.Pages

Set pagObj = pagsObj(3)

Set shpsObj = pagObj.Shapes

Set shpObj = shpsObj(1)



U S I N G   V I S I O   O B J E C T S 225

Running these statements retrieves five objects: a Document object, a
Pages collection, a Page object, a Shapes collection, and a Shape ob-
ject. References to these objects are assigned to variables and are
available for other uses, unlike the previous example. If your program
will eventually need access to these intermediate objects, your code
will be easier to read and maintain if you retrieve them all in this way.

Using the VBA files provided on your Visio 5.0 CD

The DVS (Developing Visio Solutions) folder on your Visio 5.0 CD
contains the VBA and VB code examples discussed in this book. This
code is located in the \DVS\VBA SOLUTIONS and the \DVS\VB SOLU-
TIONS folders. Most of the sample code was designed for use in the
VBA development environment with the Visio type library and uses
Visio object types; however, this book does include some VB ex-
amples also. For details about the Visual Basic files, see Chapter 19,
“Programming Visio with Visual Basic.”

To run the VBA code samples within Visio (unless otherwise specified):

1. Open the appropriate Visio file—usually the VBA Samples
Template (VBA SAMPLES.VST).

2. From the Tools menu, choose Macro, then DVS, then the name of
the macro that you want to use.

You can copy and paste, drag and drop, or import the code you need
into your own VBA projects.

Files are also provided for creating Visio programs in C++ in the
\DVS\LIBRARIES\C-CPP folder. For details about the C++ files, see
Chapter 20, “Programming Visio with C++.”

IMPORTANT  The VBA samples on your Visio 5.0 CD use global con-
stants (from the Visio type library) defined for arguments and return
values of properties and methods. For example, suppose you want to
find out what type of window—drawing, stencil, ShapeSheet, or icon
editing—a Window object represents. The Type property of a Win-
dow object returns an integer—1, 2, 3, or 4—that indicates the
window’s type. Because Visio VBA projects automatically reference
the Visio type library, you can use the constants visDrawing,
visStencil, visSheet, or visIcon instead of 1, 2, 3, or 4 to check the
window’s type.



2 2 6 C  H  A  P  T  E  R    1  1

Handling errors

When an error occurs during program execution, VBA generates an
error message and halts execution. You can prevent many errors by
testing assumptions before executing code that will fail if the assump-
tions aren’t valid. You can trap and respond to errors by using the On
Error statement in your program. For details about On Error, see
your Visual Basic documentation.

Errors can arise from a variety of situations. This section lists some
common error situations and suggests ways of preventing them. For
more examples of error-handling code, see sample programs such as
the Stencil Report Wizard (STNDOC.EXE), in the DVS folder on your
Visio 5.0 CD.

Making sure the program is
running in the right context
If you’ve decided which context a program will run in, you can make
some assumptions about the environment. For example, if you’re
writing a VBA program to handle double-click behavior, you can
probably assume that a document is open and that the double-clicked
shape is selected in the active window. However, there are limits to a
program’s ability to control user actions. For example, nothing stops
a user from attempting to run a VBA program designed to handle a
double-click event from the Macros dialog box (instead of double-
clicking the shape).

If your program requires a selected shape, check the Selection prop-
erty of the active window to make sure it contains at least one object.

Dim selectObj as Visio.Selection

Set selectObj = ActiveWindow.Selection

If selectObj.Count = 0 Then

MsgBox "You must select a shape first." _

, , "Select shape"

Else

'Continue processing

End If



U S I N G   V I S I O   O B J E C T S 227

Making sure objects exist
before attempting to retrieve them
It’s a good idea to test whether a collection contains any objects be-
fore attempting to access them. The following example checks to see
if a document has any masters before attempting to iterate through
the Masters collection, which would cause an error if the collection
were empty.

If ThisDocument.Masters.Count = 0 Then

stat = appMessage(ERR_FATAL, ERR_NOMASTERS)

End If

For details about how this program handles an empty collection, see
the appMessage procedure in \DVS\SAMPLE APPLICATIONS\STNDOC

\SELSTENC.FRM.

Making sure you get what you expect
If a property or method is supposed to return something, it’s a good
idea to make sure it actually did. For example:

Dim shpObj as Visio.Shape

Dim strText As String

strText = shpObj.Text

If strText = "" Then

MsgBox "The selected shape has no text to format." _

, , "Format Shape Text"

Else

'Continue processing

End If

Checking for error values
Visual Basic has two error functions, Err and Error. The Err function
returns an error code (an integer), and the Error function returns a
string. When an error occurs in Visio, it returns an error code and a
string that describes the error. Use the Error function to obtain the
string associated with the error code returned by Visio.



2 2 8 C  H  A  P  T  E  R    1  1

Visio’s Cell object has an Error property, which indicates whether an
error occurred when a cell’s formula was evaluated. If your program
alters ShapeSheet formulas, check this property to make sure the for-
mula works as expected. For a list of possible values, search the online
Visio Automation Reference for “error property.”

Restricting the scope
and lifetime of object variables
Because an object reference exists independently of the item it refers
to, object references can become invalid as a result of user actions that
are beyond your program’s control. For example, if you have a refer-
ence to a Shape object and the user deletes the corresponding shape,
the reference still exists in your program but it is invalid, because it
refers to a nonexistent shape. Or if you have a reference to a Selection
object and the user selects different shapes in the drawing, the Selec-
tion object no longer represents the shapes that are currently selected.

To prevent invalid references, it’s best to restrict the scope and life-
time of an object variable and refresh the variables from time to time.
For example, when your program resumes execution after giving
control to the user, you may want to release certain objects and re-
trieve them again to make sure the objects are still available and your
program has references to the objects in their current state.



Topics in this chapter

Dropping masters in a drawing ................................................................... 230

Adding text to shapes ................................................................................. 233

Printing and saving documents ................................................................... 234

Creating connected drawings ..................................................................... 235

Determining where to place shapes ........................................................... 243

Creating a network diagram from a database: an example ....................... 246

12
Creating Visio drawings
from a program

No matter what kind of drawing you create, you’ll typically follow
certain steps in your program. You’ll add shapes to the drawing, often
by dropping masters from a stencil. You’ll need to determine where to
place the shapes, and you may calculate their positions using data
gathered from another source. If you’re creating a connected diagram
such as an organization chart or flowchart, you may glue shapes
together.

This chapter describes how to create a drawing from a program by
dropping masters onto a drawing page. It describes how to create
connected diagrams by gluing shapes and reviews two examples that
calculate where to place shapes on the page. The chapter ends with a
detailed example of how to create a Visio drawing from a database.



2 3 0 C  H  A  P  T  E  R    1  2

Drawing original shapes

Although it involves more effort, you can
create shapes on the drawing page without
using masters. You can create lines,
ellipses, and rectangles, or construct more
complex shapes from existing shapes.
For details, see Chapter 14, “Working with
drawings and shapes.”

Dropping masters in a drawing

The most convenient means of creating shapes from a program is to
drop masters from a stencil. A master is essentially ready to use in a
drawing, requiring very little additional processing by your program.
You can use masters from a stencil you develop and provide with your
program or from any of the stencils provided with Visio.

To drop a master on a page:

1. Create a Document object that represents the stencil containing
the master you want.

2. Create a Master object that represents that master.

3. Create a Page object that represents the drawing page where you
want to drop the shape.

4. Drop the master on the drawing page.

The following sections explain this procedure in detail.

Getting the stencil
When you’re running a VBA program stored in a Visio file, the stencil
you want should already be open, so you can simply retrieve it from
the Documents collection. For example:

Dim stnObj as Visio.Document

...

Set stnObj = Documents("basic shapes.vss")

The example above uses the variable name stnObj rather than docObj
to distinguish between the stencil and other kinds of files. This nam-
ing convention can prevent confusion later.

As with any file-related operation, it’s prudent to make sure the sten-
cil is actually available before attempting to use it. For example:

Dim stnObj as Visio.Document

Set stnObj = Documents("basic shapes.vss")

If stnObj = Nothing Then

Set stnObj = Documents.OpenEx ("basic shapes.vss", _

visOpenRO)

End If



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 231

Typically a template is saved as a read-only file to protect it from
changes, but it’s always possible for the user to open it as an original
and alter its workspace, which could affect which stencils are opened
when the template is used.

Getting the master
A Document object has a Masters property that returns a Masters
collection of the masters in that document’s stencil. You can refer to a
Master object by its name or by its index within the Masters collec-
tion. For example:

Dim stnObj as Visio.Document

Dim mastObj as Visio.Master

...

Set mastObj = stnObj.Masters("Star 5")

A common pitfall in this process is to get the Masters collection of the
drawing file rather than that of the stencil file. Every Visio document
has a stencil, which means that every Document object has a Masters
collection. However, the Masters collection of a drawing file contains
only the masters that have already been dropped into the drawing;
the Masters collection of a new document is usually empty. In either
case, this particular Masters collection often won’t contain the master
you’re trying to get. If your program fails to get a Master object, make
sure you’re getting it from the stencil file and not the drawing file.

Getting the drawing page
You create and work with drawing pages by using Page objects and
the Pages collection. A Page object represents a drawing page. The
Pages collection represents all of the pages in a document.

A new document automatically has at least one page, so you can sim-
ply retrieve the first page. Note that the first page in a document is
indexed with 1 rather than 0. For example:

Dim pagObj as Visio.Page

...

Set pagObj = ThisDocument.Pages(1)

Documents

Document

Pages

Page

ThisDocument

Page object and related objects higher
in the Visio object model

Masters

Master

Documents

Document

ThisDocument

Master object and related objects higher
in the Visio object model



2 3 2 C  H  A  P  T  E  R    1  2

Dropping the master on the page
To drop a master on a page, use the Drop method of a Page object.
Drop takes three arguments: a reference to a Master object and a pair
of coordinates that indicate where to position the master’s center of
rotation (its pin) on the drawing page.

Dim pagObj as Visio.Page

Dim shpObj as Visio.Shape

Set pagObj = ThisDocument.Pages(1)

Set shpObj = pagObj.Drop(mastObj, 4.25, 5.5)

Coordinates are measured from the lower-left corner of the page. In
this example, 4.25,5.5 positions the shape’s pin in the center of an
8 1/2-in. by 11-in. drawing page in an unscaled drawing. (In a scaled
drawing, you specify coordinates in drawing units expressed in
inches. For example, if the drawing scale is 1 ft, you would specify the
coordinates 51,66 to drop the shape in the center of the page.) For
more information about shape coordinates, see Chapter 3, “Control-
ling shape size and position.”

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

9
10

11

The shape’s pin is positioned at the coordinates specified with Drop.

For simplicity’s sake, this example drops a single shape in the exact
center of the drawing page, and uses constants to indicate its position.
However, determining where to place shapes in a real-world drawing
can be a challenge, especially in a connected diagram with more than
a few shapes. For an example of one approach, see “Placing shapes in
an organization chart: an example” later in this chapter.

Dropping shapes in other places

The Drop method is equivalent to dragging
and dropping a shape with the mouse. In ad-
dition to dropping masters in a drawing
page, you can move a shape to another lo-
cation on the page, add it to a group, or even
create a master on the fly by dropping a
shape into a stencil (as long as the stencil
file is open as an original and not read-only).
For details, see Chapter 14, “Working with
drawings and shapes.”

Dropping multiple shapes

The DropMany method is equivalent to
dragging and dropping multiple shapes with
the mouse.

For an example and details about how to
use the DropMany method, see the online
Visio Automation Reference.

4.25, 5.5



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 233

Adding text to shapes

You’ll often set a shape’s text from the program rather than providing
it as part of a master. You can add text to a shape or change existing
text by setting the Text property of a Shape object to a string expres-
sion. For example:

Dim shpObj as Visio.Shape

...

shpObj.Text = "Twinkle"

To include quotation marks in the text, use two quotation mark char-
acters ("") to enclose the string. For example:

Dim shpObj as Visio.Shape

...

shpObj.Text = """Are you currently a customer of _

XYZ?"""

To control where lines break in text, use the Visual Basic Chr$ func-
tion to include an ASCII linefeed with the string. For example:

Dim shpObj as Visio.Shape

...

shpObj.Text = "Twinkle," & Chr$(10) & "twinkle" & _

Chr$(10) & "little star"

Twinkle,

twinkle

little star

Set the TextTextTextTextText property of a Shape object to add text to the corresponding shape.

To work with part of a shape’s text, get the shape’s Characters prop-
erty, which returns a Characters object. You set the Begin and End
properties of the Characters object to mark the range of text you
want to work with. For an example, see “Creating a network diagram
from a database: an example” later in this chapter.

Formatting and positioning text

The text of a shape is formatted according
to the existing text format of the shape.
If you’re using masters to create a drawing,
you probably won’t need to change this.
However, you can change a shape’s text
format (or its line and fill format, for that mat-
ter) by applying a style.

A shape’s text is contained in its text block
and is positioned in its own coordinate sys-
tem relative to the shape. You can control
the size and position of a shape’s text block
from a program by setting formulas in the
shape's Text Transform section.

For techniques you can use in Visio to
change a shape’s text block and control text
behaviors, see Chapter 6, “Designing text
behavior.” For details about applying styles
and setting shape formulas from a program,
see Chapter 14, “Working with drawings
and shapes.”



2 3 4 C  H  A  P  T  E  R    1  2

Printing and saving documents

Your program can print or save the drawing it creates. If your pro-
gram supplements Visio for users who are comfortable with the Visio
menu commands, you’ll probably create the drawing and leave print-
ing and saving up to the user. If not, you can handle these steps from
your program.

Printing documents and pages
You can print a document or a page in a document by using the Print
method.

To print all of the pages of a document, use Print with a Document
or ThisDocument object. This is equivalent to choosing All in the
Print dialog box in Visio. For example:

ThisDocument.Print

To print just one page, use Print with a Page object. This is similar to
displaying that page and choosing Current Page in the Print dialog
box in Visio. For example:

Dim pagObj as Visio.Page

...

pagObj.Print

Saving Visio documents
To save a document from a program, use the Save or SaveAs method
of a Document or ThisDocument object.

Use the SaveAs method and supply a file name and path to save and
name a new document, to save a copy of an existing document under
a different name, or to save an existing document to a different drive
or path. For example:

ThisDocument.SaveAs "c:\visio\drawings\myfile.vsd"

Use the Save method only if the document has already been saved
and named. For example:

ThisDocument.Save



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 235

Unlike the Save menu command in Visio, which displays the Save As
dialog box if a document is unnamed, using the Save method on an
unnamed document won’t invoke the SaveAs method—it will cause
an error.

To find out whether a document has ever been saved, check its Path
property, which returns the drive and path of the document’s full
name or a null string if the document hasn’t been saved. To find out
whether a document has been saved since changes were made to it,
check its Saved property. For details, see Chapter 13, “Getting infor-
mation from Visio drawings.”

Creating connected drawings

Connected diagrams are among the most common and useful kinds
of drawings you can create with Visio. In Visio, the act of connecting
shapes is called gluing the shapes. Shapes can be glued to other shapes
to create a connected diagram, such as an organization chart, or a di-
rected graph, such as a flowchart. When you create a connected
drawing from a program, you drop masters on a drawing page and
then glue the shapes together.

A drawing with connected shapes

Gluing is a directional operation, so it’s important to know what has
been glued to what. Once shapes are glued, you can move a shape that
has other shapes glued to it without breaking their connections, but
not vice versa. This is true whether you move the shapes from a pro-
gram or in a Visio drawing window. For example, suppose a line is
glued to a rectangle. Moving the rectangle does not break the connec-
tion—the line remains glued to the rectangle and stretches as needed.
However, moving the line breaks the connection.



2 3 6 C  H  A  P  T  E  R    1  2

Gluing shapes from a program involves these steps:

• Deciding what shape you want to glue, what shape you want to
glue it to, and where to connect the shapes

• Getting a Cell object that represents the part of the shape (such as
an end point, control point, or edge of the shape) you want to
glue

• Using the GlueTo method and specifying part of another shape
(such as a connection point, vertex, or selection handle), or using
the GlueToPos method and specifying a location, to create the
connection between the shapes

Deciding what to glue
By far the simplest way to glue one object to another is to use a mas-
ter with a control handle that extends a line you can glue to another
shape. For an example, look at the Position master from the Organi-
zation Chart Shapes stencil (ORGANIZATION CHART SHAPES.VSS).

At the top of this master is a control handle that can be glued to an-
other shape. The master also has four connection points, locations to
which other shapes can be glued. The cell references you would use to
glue these locations are shown in the following illustration.

Cell references for the control handle and connection points on the Position
master

Control handles work for many kinds of connected diagrams. How-
ever, if you don’t want to use control handles for this purpose, you
can use 1-D shapes instead. You glue the begin point and end point
of each 1-D shape between two 2-D shapes, as shown in the following
illustration.

Connections.X2

Connections.X3

Controls.X1

Connections.X4

Connections.X1

Naming connection points

In Visio 5.0, you can provide meaningful
names for connection points. For details on
naming connection points, see “Adding
connection points” in Chapter 5, “Making
shapes connect: 1-D shapes and glue.”



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 237

Cell references for begin and end points of a 1-D shape

Getting a Cell object
Once you’ve decided which part of the shape you want to glue, you
get a Cell object that represents that part of the shape. To get a Cell
object, get the Cells property of a Shape object and specify the name
of the cell you want. For example, the following statement gets a Cell
object that represents the x-coordinate of the first control handle of
the shape represented by shpObj1:

Dim shpObj1 as Visio.Shape

Dim celObj as Visio.Cell

...

Set celObj = shpObj1.Cells("Controls.X1")

To glue a point on a shape whose coordinates are represented by a
pair of cells, you can specify only one cell of the pair. It doesn’t matter
which cell you specify. In the example above, Controls.Y1 would
work equally well.

Gluing the shape to another shape
To glue the shape to another shape, you can use the GlueTo or
GlueToPos method of a Cell object. With GlueTo, you specify a cell
reference for a part of the other shape; with GlueToPos, you specify a
pair of decimal fractions relative to the other shape’s width-height
box. GlueTo and GlueToPos create a connection point at that part of
the shape or that location.

For example, the following statement uses GlueTo to glue the part of
a shape represented by celObj—the control handle shown in the fol-
lowing illustration—to the shape represented by shpObj2, at that
shape’s fourth connection point, represented by Connections.X4 in
the shape’s Connection Points section.

BeginX or BeginY EndX or EndY

Cell objects and cell formulas

When you glue shapes, the GlueTo method
sets the formula of the Cell object to the cell
reference you supply to identify part of the
shape. You’ll use Cell objects to do a lot
more than glue shapes. You can get and set
any cell formula from a program, which
gives you a lot of control over a shape’s ap-
pearance or behavior. For details about
getting and setting cell formulas, see
“Working with formulas” in Chapter 14,
“Working with drawings and shapes.”



2 3 8 C  H  A  P  T  E  R    1  2

Dim shpObj2 as Visio.Shape

Dim celObj as Visio.Cell

...

celObj.GlueTo shpObj2.Cells("Connections.X4")

shpObj2

ShpObj1

Gluing a control handle to a connection point with GlueTo

The following statement uses GlueToPos to glue the same shape to
the center of shpObj2, creating a new connection point at that loca-
tion. Note that the location is specified as decimal fractions of the
shape’s width-height box, not as x,y coordinates. These fractions can
be negative or greater than 1 to create a connection point outside the
shape’s width-height box.

Dim shpObj2 as Visio.Shape

Dim celObj as Visio.Cell

...

celObj.GlueToPos shpObj2, .5, .5

shpObj1

shpObj2

Gluing a control handle to a location with GlueToPos

celObj represents the control handle
Controls.X1 of shpObj1.

GlueToPos shpObj2, .5, .5 glues the control handle
of shpObj1 to the center of shpObj2.

celObj.GlueTo shpObj2.Cells("Connections.X4")
glues the control handle of shpObj1 to the connection
point at the bottom of shpObj2.

celObj represents the control handle
Controls.X1 of shpObj1.



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 239

What can be glued to what
Only certain parts of shapes can be glued. For example, an endpoint
of a 1-D shape or a control handle of a 2-D shape can be glued to a
connection point, but a side of a 2-D shape can be glued only to a
guide or guide point. The following table lists the ShapeSheet cells
that represent the parts of a shape you’ll typically want to glue.

To glue Get one of these cells And glue it to any of these cells in another shape

The begin point BeginX or BeginY, EndX or EndY Connections.Xn or Connections.Yn, Geometry.Xn

or end point of or Geometry.Yn, AlignLeft, AlignCenter, AlignRight,

a 1-D shape AlignTop, AlignMiddle, AlignBottom, PinX (to

dynamically glue)

A control Controls.Xn or Controls.Yn, where n is Connections.Xn or Connections.Yn, Geometry.Xn

handle the row number for that control handle or Geometry.Yn, PinX or PinY, AlignLeft,

AlignCenter, AlignRight, AlignTop, AlignMiddle,

or AlignBottom, PinX (to dynamically glue)

The edge AlignLeft, AlignCenter, AlignRight, PinX or PinY

of a shape AlignTop, AlignMiddle, or AlignBottom

Gluing part of a shape represented by a pair of cells. Many points on a
shape—control handles, connection points, end points, geometry
vertices, and the like—are specified by two ShapeSheet cells, one for
each of the x,y coordinates for the point. Whenever you glue part of a
shape represented by a pair of cells, you can specify either cell of the
pair. For example, to indicate the first control handle of the Position
shape, you can specify either Controls.X1 or Controls.Y1.

Gluing to selection handles. An alignment cell corresponds to the se-
lection handle in the middle of the specified part of the shape. For
example, AlignTop corresponds to the selection handle in the middle
of the shape’s top edge. Gluing to an alignment cell in a program is
the same as gluing to the corresponding selection handle in a drawing
window.

Note that you’re not actually gluing to the selection handle itself—
instead, you’re using it to create a connection point at that location
on the shape. This is true whether you’re gluing the shapes from a
program or in a Visio drawing window. A row is added to the shape’s
Connections section to represent the new connection point.



2 4 0 C  H  A  P  T  E  R    1  2

Gluing to guides or guide points. Guides are nonprinting lines dragged
out from rulers in the Visio drawing window that you can use to align
shapes. You can glue shapes to a guide, then move the guide and the
shapes with it. When you glue a 1-D shape to a guide, it doesn’t mat-
ter whether you specify an X or Y cell as the cell to glue—the type of
guide determines which cell or cells are glued.

Connecting shapes in an
organization chart: an example
This sample VB program draws an organization chart in Visio based
on a hierarchical outline that the user enters in a user form. This pro-
gram can also read an organization chart drawn in Visio and create
an outline from it.

The source code for this program is located in \DVS\VB SOLUTIONS

\ORGCHART.

An outline in ORGCHART.EXE

mnuChartItem_Click( ) calls the
CreateOrgChart subroutine, which calls
DrawOrgChart to draw the organization

chart in Visio.



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 241

A

B

D E

C

F G

The organization chart created from the outline

To prepare the organization chart data for Visio, the CreateOrgChart
subroutine in ORGCHART.BAS loops through the items in the user
form’s outline control and gets certain information about each item,
such as its parent, which is used to connect each box to the box above
it in the diagram. Other information is used to determine where to
place each box in the drawing. For details, see “Determining where to
place shapes” later in this chapter.

For each item in the outline, DrawOrgChart calls two subroutines,
PosX and PosY, to calculate the position of the item’s box in the orga-
nization chart. (More about these subroutines later.) Next
DrawOrgChart drops the Position master from the organization
chart stencil (VB SAMPLES.VSS) at that location on the drawing page.
DrawOrgChart then assigns the outline item’s text to the box in the
drawing and repeats with the next item in the outline.

After all the boxes are drawn and their text has been set,
DrawOrgChart connects the boxes. Notice the statement toward the
end of the procedure that uses the GlueTo method to glue the control
handle (Controls.X1) of each child box to a connection point
(Connections.X4) of its parent.



2 4 2 C  H  A  P  T  E  R    1  2

DrawOrgChart macro in \DVS\VB SOLUTIONS\ORGCHART\ORGCHART.BAS

Private Sub DrawOrgChart (rgParent() As Integer, rgLeft() As Integer, rgRight() As Integer, _

cLeaves As Integer, cLevels As Integer)

ReDim objArray(cMax) As Object

Dim objPage As Visio.Page

Dim objStencil As Visio.Document

Dim objMasters As Visio.Masters

Dim objMaster As Visio.Master

Dim objShapes As Visio.Shapes

Dim iIndex As Integer

Dim iIndent As Integer

Dim X As Double

Dim Y As Double

'Get the stencil, master, and page objects.

Set objStencil = Documents.Item("VB Samples.vss")

Set objMasters = objStencil.Masters

Set objMaster = objMasters.Item("Position")

Set objPage = appVisio.ActivePage

'Calculate the pin of each Position shape based on cLeaves and cLevels.

For iIndex = 0 To frmOrgChart.Outline1.ListCount - 1

X = PosX(cLeaves, rgRight(iIndex), rgLeft(iIndex))

Y = PosY(cLevels, iIndex)

Set objArray(iIndex) = objPage.Drop(objMaster, X, Y)

objArray(iIndex).Text = (frmOrgChart.Outline1.List(iIndex))

Set obj.Shapes = objArray(iIndex).Shapes

Next iIndex

'Glue each child to its parent.

For iIndex = 0 To frmOrgChart.Outline1.ListCount - 1

iIndent = rgParent(iIndex)

If iIndent <> -1 Then

objArray(iIndex).Cells("Controls.X1").GlueTo _

objArray(rgParent(iIndex)).Cells("Connections.X4")

End If

Next iIndex

End Sub



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 243

Determining where to place shapes

Determining where to place shapes can be one of the more challeng-
ing tasks for a program that creates Visio drawings, especially in
connected diagrams or other kinds of drawings with complex rela-
tionships between shapes. The ultimate goal is the same: You’ll need
to calculate a pair of page coordinates for each shape you place on the
drawing page. The approach you take will depend on the kind of
drawing you’re trying to create and the data on which the drawing is
based.

This section explores two examples of programs that determine
where to place shapes in a drawing.

Arranging shapes on a page: an example
The Stencil Report Wizard (STNDOC.EXE) creates a catalog of the
masters in a stencil. Using the stencil and report options selected by
the user, the Stencil Report Wizard creates a Visio drawing that shows
each master with its name and prompt.

Name:

Prompt:

Comm-link

Use with satellite, satellite dish, etc.
to indicate a communication link.

Name:

Prompt:

Cloud

Represents a network or other
system for which details need not be
seen. Link to another page or
document via right mouse menu.

Cloud

Name:

Prompt:

City

Represents a city or a wide area
network (WAN) node. Link to another
page or document via right mouse
menu.

City

Name:

Prompt:

Printer

Represents a typical laser or
PostScript printer.

Laser printer

Name:

Prompt:

Printer 2

Represents a typical laser or
PostScript printer.

Laser printer

Name:

Prompt:

ASCII Printer

Represents an ASCII printer.

ASCII Printer

Name:

Prompt:

Printer 3

Represents a typical IBM or Lexmark
laser printer.

IBM laser printer

Name:

Prompt:

Scanner

Represents an image scanning
device.

Scanner

Name:

Prompt:

Plotter

Represents a plotter or similar output
device.

Plotter

Name:

Prompt:

Modem

Represents a modem, or modulator /
demodulator.

Modem

Name:

Prompt:

Telephone

Represents a telephone or other
voice transmitter / receiver.

Telephone

Name:

Prompt:

Fax

Represents a facsimile transmitter /
receiver.

Fax

Network

The Stencil Report Wizard creates a drawing with an instance of each master, its
name, and its prompt arranged to the user’s specifications.

The source code for the Stencil Report Wizard is in \DVS\SAMPLE

APPLICATIONS\STNDOC.



2 4 4 C  H  A  P  T  E  R    1  2

The placement of shapes is determined by two subroutines:
pageCompute and gridCompute in MAIN.BAS. The pageCompute
subroutine obtains dimensional information about the page—its
drawing scale, page scale, page height, and page width—by retrieving
a special shape called ThePage. (For details about ThePage, see Chap-
ter 14, “Working with drawings and shapes.”) The gridCompute
subroutine uses the metrics calculated by pageCompute along with
the number of rows and columns requested by the user to build an
array of row and column positions.

The DrawCreate subroutine in PROGRESS.FRM uses the array pro-
duced by pageCompute to calculate the page coordinates at which to
drop each master in the stencil. Here’s the part of DrawCreate that
actually drops a master on the page:

'Drop each master on page

For row = gGrid.rows - 1 To 0 Step -1

For col = 0 To gGrid.cols - 1

If masterIndex > masters.Count Then

GoTo fexit

End If

'Drop master in the center of the grid

Set master = masters(masterIndex)

stat = DrawYield("", "", master.Name)

xLeft = gGridArray(row, col).Left + _

gGrid.ColWidth / 2

yTop = gGridArray(row, col).Top - _

gGrid.RowHeight / 2

Set inst = page.Drop(master, xLeft, yTop)

This subroutine also creates all of the necessary pages for the report,
formats them with header, footer, and grid lines, and draws new
shapes, which it uses to create new masters by dropping them in the
drawing file’s stencil. For details, see Chapter 14, “Working with
drawings and shapes.”

Placing shapes in an
organization chart: an example
To calculate where to place each box in the organization chart, the
CreateOrgChart subroutine in \DVS\VB SOLUTIONS\ORGCHART\
ORGCHART.BAS finds the number of levels (depth of the outline), the



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 245

number of leaves (items at the deepest level in the outline), the num-
ber of children each item has, and the item’s parent. For example, the
outline in the illustration shown earlier in this chapter has three lev-
els and four leaves. This information is used to calculate where to
place each organization chart box on the drawing page, so that the
finished chart is centered vertically and horizontally on the page.

To see how the position of a box is calculated, take a look at the PosX
and PosY functions in ORGCHART.BAS. PosX and PosY return x,y co-
ordinates to DrawOrgChart, which passes them as arguments to the
Drop method to drop the master objMaster at the page coordinates X
and Y:

X = PosX(cLeaves, rgRight(iIndex), rgLeft(iIndex))

Y = PosY(cLevels, iIndex)

Set objArray(iIndex) = objPage.Drop(objMaster, X, Y)

To calculate the x-coordinate for a given box in the chart, PosX uses
the number of leaves in the chart (cLeaves) to determine the offset
from the left side of the chart, and uses the number of children the
box has (aright + aleft) to center the box over its children.

Private Function PosX (cLeaves As Integer, aright As Integer, aleft As Integer) As Double

Dim MulX As Double, OffX As Double

MulX = 1.25 'Width of the Position shape

OffX = 5# - (1# * cLeaves) / 2

PosX = OffX + MulX * (aright + aleft) / 2#

End Function

The PosY function calculates the y-coordinate for the box, using the
number of levels in the chart (cLevels) to determine the vertical posi-
tion of the box on the chart.

Private Function PosY (cLevels As Integer, index As Integer) As Double

Dim OffY As Double

Dim separation As Double

separation = 1

OffY = 4.5 + (cLevels * separation) / 2 '1/2(page height - margins)

PosY = OffY - (frmOrgChart.Outline1.Indent(index)) * separation

End Function



2 4 6 C  H  A  P  T  E  R    1  2

Creating a network diagram from a database: an example

This example program shows how to create a simple network dia-
gram from the contents of a database. For a complete listing, see the
NetDB1 module in \DVS\VBA SOLUTIONS\NETDB.VST. The database
used in this example, NETWORK.MDB, was created with Microsoft Ac-
cess and is also included on your Visio 5.0 CD.

To create the drawing, the program opens the database and sets up
the document and the drawing page. The program drops the
Ethernet master on the drawing page, then loops through records in
the database, creating a node for each record.

Before creating a node, the program turns screen updating off. Creat-
ing a node involves dropping a master for that node in the drawing,
labeling the node shape, and connecting the Ethernet shape to the
node. The program also formats the first line of the node’s label in
bold. After each node is created, the program turns screen updating
back on so the user sees the node appear in its final user form, rather
than seeing each step of its construction.

Opening the database
The database NETWORK.MDB contains one table, NetInfo. Each record
in the table contains four text fields: Name, Node, Dept, and Spec. The
Name and Dept fields are used to label the nodes in the diagram. The
Node field indicates the name of the Visio master from NETDB.VSS

that should be used to represent a particular node. The Spec field con-
tains additional information for the diagram.

Using the data access methods supplied in DAO (Data Access Ob-
jects) from VBA, the program first opens NETWORK.MDB, gets a
recordset, and assigns the recordset to an object variable called
NetInfo:

Network Diagrammer

The Network Diagrammer (NETDIAG.EXE) is a
more extensive version of the example dis-
cussed in this section. To see how Network
Diagrammer uses data to create a diagram,
look at MAIN.BAS in \DVS\VB SOLUTIONS\
NETDIAG.



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 247

Dim NetBase as DAO.Database

Dim NetInfo as DAO.RecordSet

Set NetBase = OpenDatabase(Visio.Application.Path _

& "dvs\vb solutions\netdb\network.mdb",True,True)

Set NetInfo = NetBase.OpenRecordset("NetInfo", _

dpOpenShapshot)

For details about creating and accessing databases for use with pro-
grams, see your Visual Basic documentation.

Dropping the Ethernet master
To start creating the network diagram, the program gets the master
named Ethernet from the Masters collection of the stencil document,
then drops it onto NetDiagram. (The Ethernet shape will be posi-
tioned more precisely later.) The Shape object returned by Drop
represents the new Ethernet shape on the page.

Set Master = NetStencil.Masters("Ethernet")

Set Ethernet = NetDiagram.Drop(Master, 1, 1)

This sample Ethernet shape is a 1-D shape; that is, it has a begin point
and an end point rather than sizing handles. The program can use the
SetBegin and SetEnd methods of the Ethernet shape object to posi-
tion the shape’s begin point at the page coordinates 0.5, 2.0 and its
end point at the page coordinates 7.5, 2.0.

Ethernet.SetBegin .5, 2

Ethernet.SetEnd 7.5, 2

Controlling screen updating
With the Ethernet shape in place, the program uses a While loop to
add a node to the diagram for each record in the database. First, take
a look at the loop control structure. (The code inside the loop is dis-
cussed in the following sections.) By turning ScreenUpdating off
before dropping the node master and back on after the master is
dropped, the program conceals screen changes, so users see a change
only after the new shape has been added. This has a neat and clean ef-
fect and is faster than if ScreenUpdating is left on. If your drawing is
more complex, you might want to move these statements outside the
loop to reduce the number of screen updates.



2 4 8 C  H  A  P  T  E  R    1  2

NetInfo.MoveFirst

XPos# = 1

Digit% = Asc("1")

While Not NetInfo.EOF

Visio.ScreenUpdating = False

...

'Drop the nodes in the diagram

'Label the nodes

'Connect the nodes to the Ethernet

'Format the node labels

...

Visio.ScreenUpdating = True

NetInfo.MoveNext

Wend

Placing a node in the diagram
To place a node in the diagram, the program again uses the Drop
method. For each node, the program drops the master specified in
the Node field of the corresponding database record. The coordinate
arguments to Drop indicate where to place the pin of the shape. In
the case of these node shapes, the pin is in the center of the shape.
(For clarity, the enclosing statements of the loop control structure are
repeated in the code fragments that follow.)

While Not NetInfo.EOF

...

NodeType$ = NetInfo.Fields("Node")

Set Master = NetStencil.Masters(NodeType$)

Set Shape = NetDiagram.Drop(Master, XPos#, .875)

XPos# = XPos# + 1.5

...

Wend

Labeling the nodes
The program constructs the label for each node from the Name and
Dept fields in the database table. Once the label is constructed, the
program assigns it to the Text property of the shape.



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 249

While Not NetInfo.EOF

...

Label$ = NetInfo.Fields("Name")

Label$ = Label$ & Chr$(13) & Chr$(10)

Label$ = Label$ & NetInfo.Fields("Dept")

Shape.Text = Label$

...

Wend

Connecting the nodes to the Ethernet shape
The lines of the Ethernet shape have control handles that can be at-
tached to nodes. To attach the Ethernet shape to a node, the program
glues one of the control handles of the Ethernet shape to a connec-
tion point on a node.

In this example, the object variable ControlCell is set to a cell refer-
ence of a control handle on the Ethernet shape (Controls.Xn). The
Digit% variable picks one handle for each node. Each node has sev-
eral connection points, but the fifth connection point is at the top of
the shape, so that’s a reasonable one to use.

x

Connecting the Ethernet shape to a node shape

The program sets the object called ConnectCell to the node’s fifth
connection point cell (Connections.X5). The final statement uses
GlueTo to glue the control handle to the connection point.

Controls.X & Chr$(Digit%)

Connections.X5.



2 5 0 C  H  A  P  T  E  R    1  2

While Not NetInfo.EOF

...

Set ControlCell = Ethernet.Cells("Controls.X" & _

Chr$(Digit%))

Digit = Digit + 1

Set ConnectCell = Shape.Cells("Connections.X5")

ControlCell.GlueTo ConnectCell

...

Wend

Formatting node labels
As a final touch, the program formats the first line of each node label
in bold. To do this requires slightly more sophisticated knowledge of
Visio, because it involves getting a member shape of a group and
working with a subset of its text.

Getting the member shape with the text. Each of the node shapes is a
Visio group. When the label text was assigned to the node, it was not
added to the group but to a member of the group—specifically, the
topmost shape. To manipulate the node’s text, the program must
access this member shape.

For purposes of Automation, a Visio group is a Shape object with a
Shapes collection. To get the topmost shape in the group, the pro-
gram first gets the count of the shapes in its Shapes collection, then
gets the shape with the highest index.

While Not NetInfo.EOF

...

Index = Shape.Shapes.Count

Set TextShape = Shape.Shapes(Index)

...

Wend



C R E A T I N G   V I S I O   D R A W I N G S   F R O M   A   P R O G R A M 251

Getting a subset of the shape’s text. To work with a range of charac-
ters from the shape’s text, the program gets a Characters object. This
object is retrieved from a shape through its Characters property. The
character object’s Begin and End properties indicate the begin and
end of the desired range. In this example the program wants the text
up to the first carriage return. The Begin property is initially 0, so it
doesn’t need to be changed; the program sets End to the one charac-
ter before the return character (Chr$(13)).

After setting the Characters object to the desired text range,
the program sets the character style to bold. The constants
visCharacterStyle and visBold are defined by the Visio type library.

While Not NetInfo.EOF

...

Set Chars = TextShape.Characters

Chars.End = InStr(TextShape.Text, Chr$(13)) - 1

Chars.CharProps(visCharacterStyle) = visBold

...

Wend

Ethernet

AndyJ

Product Development KeriD

Technical Support

JohnF

Marketing

CindyM

Creative Services

MitchS

Product Development

The diagram created from NETWORK.MDB





Topics in this chapter

Getting information from documents and pages ........................................ 254

Getting information from shapes ................................................................ 259

Getting cells from shapes ........................................................................... 262

Getting information from connected diagrams .......................................... 266

Storing Visio data ........................................................................................ 274

13
Getting information
from Visio drawings

Now you’re acquainted with the basics of creating a Visio drawing
from a program. You’ve seen some examples that address common
problems, such as creating connected diagrams and determining
where to place shapes on a page.

A Visio drawing can also be a rich source of data for other uses. For
example, you might generate a furniture order from an office space
plan or a parts list from an electrical schematic. This chapter de-
scribes how to get information from a Visio drawing by getting
properties of documents, pages, and shapes, and by getting the results
of formulas. It also describes how to analyze a connected diagram
and provides tips for storing Visio data.



2 5 4 C  H  A  P  T  E  R    1  3

Getting information from documents and pages

When working with an existing drawing from a program, you’ll often
simply get the active page of the active document—that is, the draw-
ing displayed in the active drawing window. However, in some
circumstances your program may open a document for the user or
retrieve a document that is open but not active.

You’ll usually begin by opening a drawing file if necessary, then get-
ting a Page object for the drawing page you want to work with. You
can either get the active page in the instance of Visio or get the active
document and retrieve a page from its Pages collection.

Getting the active page
If you expect your user to create or display a drawing and then run
your program, it’s reasonable to assume that the active page contains
the drawing you want. To get the active page for a document, you can
get the ActivePage property of the global object. For example:

Dim pagObj as Visio.Page

...

Set pagObj = ActivePage

Getting a document
If you know an open document’s file name, you can retrieve it from
the Documents collection, whether or not the document is active. For
example:

Dim docObj as Visio.Document

...

Set docObj = Documents.Item("hello.vsd")

This example retrieves the document HELLO.VSD from the Docu-
ments collection. If HELLO.VSD is not open, attempting to retrieve it
causes an error.

Opening a document. You can use the Open method of a Documents
collection to open a document if you know its path and file name:

Dim docObj as Visio.Document

...

Set docObj = _

Documents.Open("c:\visio\drawings\hello.vsd")Document object and related objects
higher in the Visio object model

Global

Documents

Document

ThisDocument

ActiveDocument



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 255

This statement opens the document HELLO.VSD as an original and
adds it to the Documents collection.

You can open any Visio document—stencil, template, or drawing
file—with the Open method, but this is not recommended for sten-
cils and templates. The Open method opens the document as an
original rather than as a copy or read-only. An original document can
be changed, which is undesirable for stencils and templates because
nothing prevents the user from editing masters, altering the
template’s workspace, or making other potentially unwelcome
changes.

To open a Visio document as read-only, use the OpenEx method. You
can also use OpenEx to open a copy of a document, open it without
adding its name to the Visio File menu, or open a stencil docked in a
drawing window. For details, see OpenEx in the online Visio Auto-
mation Reference.

Getting the active document. The global object has an ActiveDocument
property that refers to the document in the active window regardless
of the window’s type. This statement retrieves the active document in
an instance of Visio and assigns it to an object variable named
docObj:

Dim docObj as Visio.Document

...

Set docObj = ActiveDocument

As an alternative, if you’ve retrieved the active window, you can get
the Document property of that Window object: It refers to the same
Document object as does ActiveDocument.

Getting information about documents
You can get information about a document by retrieving properties
such as Creator, Description, Keywords, Subject, and Title. These
properties correspond to text boxes in the Visio Properties dialog box,
which is available from the Properties command on the File menu.

Other ways to get documents

You can get a document by its index in the
Documents collection, or you can iterate
through the collection to get all of the
documents that are open in an instance.
For example, you might do this to display
each document’s file name in a list box. For
details about iterating through a collection,
see Chapter 11, “Using Visio objects.”



2 5 6 C  H  A  P  T  E  R    1  3

A Document object has three properties you can use to get a
document’s file name:

• Name returns only a document’s file name—for example,
hello.vsd. Until a document is saved, Name returns the temporary
name of the document, such as Drawing1.

• FullName returns the drive, path, and file name of a document.
For example, c:\visio\drawings\hellovis.vsd. Like the Name
property, until a document is saved, FullName returns the
temporary name of the document.

• Path returns only the drive and path of a document’s full name.
For example, c:\visio\drawings\. Until the document is saved,
Path returns a null string ("").

These properties are read-only. To change the name, drive, or path of
a document, use the SaveAs method to save the document under a
different name or to a different drive or path.

You can get the status of a document by getting its ReadOnly or
Saved property:

• ReadOnly returns TRUE if a document is opened read-only.

• Saved returns TRUE if the document has no unsaved changes.

Getting pages and backgrounds
To get a page from a document, get the Pages collection of the Docu-
ment or ThisDocument object, then get a Page object from the
collection. You can get a page by its index within the collection, or if
you know the name of the page, you can get it by name. For example:

Dim pagObj as Viso.Page

...

Set pagObj = ThisDocument.Pages.Item("Engineering")

Documents

Document

Pages

Page

ThisDocument

Page object and related objects higher in
the Visio object model



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 257

Getting background pages. A drawing can consist of foreground pages
and background pages. A background page typically contains a set of
shapes, such as a corporate logo or a legend, that appear on more
than one drawing in the document. The same background page can
be assigned to more than one foreground page. A background page
can also have its own background page, so a drawing as it appears in
a Visio window can actually consist of any number of pages.

Whether your program should get a background page in addition to
the foreground page of a drawing depends on the contents of the
background page. A corporate logo or legend probably doesn’t con-
tain essential data that your program needs to collect. However, if the
shapes on a background page are an integral part of the drawing,
you’ll want to get these pages, or at least ask the user whether you
should.

To determine whether a page has a background, check the Page
object’s BackPage property, which refers to the background page as-
signed to that Page object. If the page has no background page,
BackPage returns Nothing. Because a background page can have a
background page, continue checking the BackPage property of each
background page until BackPage returns Nothing. That way, you’ll
know you have all of the pages that make up the drawing.

To determine whether a page is a background, check the Page object’s
Background property, which is True if the page is a background page
or False if it is a foreground page.

Iterating through the Pages collection. The items in a Pages collection
are indexed starting with foreground pages in the order they are listed
in the Reorder Pages dialog box, followed by background pages in ar-
bitrary order. (To view the Reorder Pages dialog box, choose Drawing
Page from the Edit menu, then choose Reorder Pages.)

Foreground pages Background pages

1 2 3 1 2 3

The order of pages in a Pages collection

Pages, backgrounds, and layers

You can name a page from a program by
setting its NameNameNameNameName property. To name a page
in Visio, choose Page Setup from the File
menu, then click the Page Properties tab.
For details, search Visio online help for
“page properties box.”

You can create and assign background
pages and change page settings from a
program. For details, see “Creating and
changing pages and backgrounds” in
Chapter 14, “Working with drawings and
shapes.”

Shapes on a page or background can be
assigned to layers, which are a means of
organizing shapes in a drawing. You can
create or change layers or assign shapes
to layers from a program. For details, see
“Working with layers” in Chapter 14,
“Working with drawings and shapes.”



2 5 8 C  H  A  P  T  E  R    1  3

The following example iterates through the Pages collection of the ac-
tive document and lists the names of all foreground pages in a list box
on a user form.

Sub IteratePages ()

Dim pagsObj As Visio.Pages

Dim pagObj As Visio.Page

Dim i As Integer

Set pagsObj = ThisDocument.Pages

UserForm2.ListBox1.Clear

For i = 1 To pagsObj.Count

Set pagObj = pagsObj(i)

If pagObj.Background = False Then

UserForm2.ListBox1.AddItem pagObj.Name

 End If

Next i

UserForm2.Show

End Sub

Getting information about pages
You can get information about the dimensions and appearance of a
drawing page by getting a Page object’s PageSheet property. This
property returns a Shape object that represents the page’s formulas.
These cells correspond to cells in the ShapeSheet window for a page.

For example, the following statements return the width of the page:

Dim shpObj as Visio.Shape

Dim celObj as Visio.Cell

...

Set shpObj = pagObj.PageSheet

Set celObj = shpObj.Cells("PageWidth")

dWidth = celObj.Result("inches")

For details about getting Cell objects, see “Getting cells from shapes”
later in this chapter. For more details about working with page for-
mulas, see “Creating and changing pages and backgrounds” in
Chapter 14, “Working with drawings and shapes.” For a list of page
cells, see Appendix B, “ShapeSheet sections, cell references, and index
constants.”



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 259

Getting information from shapes

A Shape object represents a basic shape, a group, a guide or guide
point, or a linked or embedded object. A Shape object can also repre-
sent the formulas of a page or a master. A Shapes collection represents
all of the Shape objects on a drawing page, in a group, or in a master.

Getting a shape
To get a Shapes collection of a page, get the Shapes property of the
Page object. If a Shape object represents a group or the page sheet of
a page or master, that Shape object also has a Shapes property.

You can get a Shape object from a Shapes collection by its index
within the collection, by its name, or by its unique ID.

Getting a shape by its index. The order of items in a Shapes collec-
tion is the same as the stacking order of the corresponding shapes on
a drawing page. The first item in a Shapes collection is the shape far-
thest to the back on the drawing page, and the last item is the shape
closest to the front. For example, to get the shape closest to the front
on the page:

Dim shpsObj as Visio.Shapes

Dim shpObj as Visio.Shape

...

shpIndex = shpsObj.Count

Set shpObj = shpsObj.Item(shpIndex)

Getting a shape by name or unique ID. A Shape object has three prop-
erties that identify the shape—Name, NameID, and UniqueID.

Name returns shapeName[.nnnn] where shapeName is the name of
the shape displayed in the Special dialog box and nnnn is the shape’s
ID. (To view the Special dialog box, choose Special from the Format
menu.) A shape’s name can be from 1 to 31 characters and is usually
descriptive of the shape, such as Desktop PC. For example, to get a
shape named Workstation:

Dim shpsObj as Visio.Shapes

Dim shpObj as Visio.Shape

...

Set shpObj = shpsObj.Item("Workstation")

Pages

Page

Masters

Master

Shapes

Shape

Documents

Document

ThisDocument

Shape object and related objects higher in the
Visio object model

Variations on shape names

If a shape has been named, either by setting
its Name property or by typing a name in the
Special dialog box, the Name property re-
turns that name. Otherwise, the values
returned by Name can vary in the following
ways:

• If the shape is the first or only instance of
a particular master on the page or in a
group, the shape’s name is the name of
the master with no ID number. For ex-
ample, Decision.

• If the shape is a second or subsequent
instance of a particular master on a page
or in a group, the shape’s name is the
name of the master followed by the
shape’s ID number. For example, Deci-
sion.43.

• If the shape is not an instance of a master
and has not been named, its name is
Sheet. For example, Sheet.34. In this
case, the Name and NameID properties
for the shape return the same string.



2 6 0 C  H  A  P  T  E  R    1  3

NameID returns Sheet.nnnn where nnnn is an integer from one to
four digits that indicates the order in which the shape was created on
a drawing page—for example, Sheet.34. This ID is assigned to the
shape when it is created on a drawing page and is guaranteed to be
unique on that page. For example, to get a shape whose ID is 5:

Dim shpsObj as Visio.Shapes

Dim shpObj as Visio.Shape

...

Set shpObj = shpsObj.Item("Sheet.5")

UniqueID(visGetGUID) returns the shape’s unique ID if it has one.
You can work with unique IDs only from a program—you can’t access
them in Visio. Most often, unique IDs are used to identify shapes that
have corresponding records in a database. For example, an office
floor plan might have dozens of identical desk, chair, and PC shapes,
but you can use the unique ID of each shape to associate a particular
shape in the floor plan with a particular record in a facilities database.

A shape doesn’t have a unique ID until a program generates one for
it. By contrast, a master always has a unique ID, generated by Visio. A
unique ID is stored internally as a 128-bit value, but Visio returns this
value as a string. You can pass the unique ID string with the Item
method to get a shape by its unique ID. For example:

Set shpObj = shpsObj.Item("{667458A1-9386-101C-9107-

00608CF4B660}")

For more details about unique IDs for shapes and masters, see “Asso-
ciating data with shapes” in Chapter 14, “Working with drawings and
shapes.”

Identifying a shape’s type
Because a Shape object can represent more than just a basic shape,
you may need to determine its type. A Shape object has a Type prop-
erty that indicates the type of shape it is. The values returned by the
Type property are represented by the following constants defined in
the Visio type library:

••••• visTypeShape identifies a shape that is not a group, such as a line,
ellipse, or rectangle, including shapes with multiple paths.



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 261

••••• visTypeGroup identifies a group. A group can contain shapes,
groups, foreign objects, and guides.

••••• visTypeForeignObject identifies an object imported, embedded,
or linked from another application.

••••• visTypeGuide identifies a guide or guide point.

••••• visTypePage identifies the page sheet of a page or master.

An instance of a master may be a basic shape or a group, depending
on how the master was created.

In the Shapes collection of a Page object, each group counts as a
single shape. However, a group has a Shapes collection of its own. The
following example counts the shapes on a page, including those in
groups (but not the groups themselves) by iterating through the
Shapes collection of a Page object, and checking the Type property of
each Shape object to see whether the shape is a group. If Type returns
visTypeGroup, the example retrieves the number of shapes in the
group and adds that number to the total number of shapes.

ShapesCount function in \DVS\VBA SOLUTIONS\VBA SAMPLES.VST\DVS MODULE

Function ShapesCount (root As Visio.Shape) As Integer

Dim iCount As Integer ' Return value

Dim shpsObj As Visio.Shapes ' Shapes collection

Dim shpObj As Visio.Shape ' Shape object

Dim i As Integer ' Shapes index

iCount = 0

Set shpsObj = root.Shapes ' Assumes root.Shapes is a group or a page.

For i = 1 To shpsObj.Count

Set shpObj = shpsObj(i)

If shpObj.Type = visTypeGroup Then

iCount = iCount + ShapesCount(shpObj)

Else

iCount = iCount + 1

End If

Next

ShapesCount = iCount

End Function



2 6 2 C  H  A  P  T  E  R    1  3

Getting a shape’s text
The Text property of a Shape object returns a string containing the
text displayed in the shape. If a shape’s text contains fields, such as a
date, time, or custom formula, the string returned by the shape’s Text
property contains field codes, not the expanded text that is displayed
for the fields. Each field code is 4 bytes long and starts with the hexa-
decimal value 1E (decimal 30). The next three bytes contain field data
and display format. Field code constants are defined in the Visio type
library.

Getting the text with field codes allows you to preserve a shape’s text
fields when retrieving and setting the shape’s text from a program. If
you want the shape’s text with fields fully expanded to what they dis-
play in the drawing window, get the shape’s Characters property and
then get the Text property of the resulting Characters object. You can
also get a subset of the shape’s text by setting the Begin and End
properties of the Characters object. For details, see “Creating a net-
work diagram from a database: an example” in Chapter 12, “Creating
Visio drawings from a program.”

If the shape has user-defined cells or custom properties, these may
also contain text. For details, see the next section, “Getting cells from
shapes.”

In addition to the Text property, which contains the text displayed in
the shape, the Data1, Data2, and Data3 properties contain the text
that appears in the Special dialog box in Visio for that shape. For de-
tails about the Special dialog box, search online help for “special
command.”

Getting cells from shapes

Certain objects have formulas that determine their appearance and
behavior. In the Visio object model, a Shape object can have many
cells, each having a formula that determines the value of the attribute
represented by the cell. To work with a formula, you get a Cell object
that contains the formula you want. You can then use the formula or
its result in your program.

Custom formula fields

Some fields in a shape’s text may be custom
formula fields, which evaluate to the results
of formulas stored in the shape’s Text Fields
section. To get a custom formula as a string,
use the Formula property of a Cell object
that represents that custom formula’s cell in
the Text Fields section.



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 263

Pages

Page

Masters

Master

Shapes

Shape

Documents

Document

Cell

ThisDocument

Cell object and related objects higher in the Visio object model

To work with formulas of a page or master, get the Shape object re-
turned by the PageSheet property of the Page object or Master object.
You can then use the Cells property of that Shape object to work with
its formulas. For example, to retrieve a page’s width:

Dim pagObj as Visio.Page

Dim shpObj as Visio.Shape

Dim celObj as Visio.Cell

...

shpObj = pagObj.PageSheet

celObj = shpObj.Cells("PageWidth")

Getting a cell by name. To get a Cell object, use the Cells property of a
Shape object and specify the name of the cell you want. For example,
to retrieve a shape’s Width cell:

Dim shpObj as Visio.Shape

Dim celObj as Visio.Cell

...

Set celObj = shpObj.Cells("Width")

To refer to the first cell in a shape’s first Geometry section:

Dim shpObj as Visio.Shape

Dim celObj as Visio.Cell

...

Set celObj = shpObj.Cells("Geometry1.X1")

Getting cells with CellsSRC

You can also use the CellsSRC property to
get a cell by section, row, and cell indexes,
whether or not that formula also appears in
the ShapeSheet window. For example, you
can retrieve the formulas that control tabs in
text, even though tab settings are not shown
in the ShapeSheet window. For details
about CellsSRC, see “Working with formu-
las” in Chapter 14, “Working with drawings
and shapes.”



2 6 4 C  H  A  P  T  E  R    1  3

To refer to the Font cell in the third row of a shape’s Character For-
mat section:

Dim shpObj as Visio.Shape

Dim celObj as Visio.Cell

...

Set celObj = shpObj.Cells("Char.Font[3]")

For a list of cell names you can use with Cells, see Appendix B,
“ShapeSheet sections, cell references, and index constants.”

NOTE  Because of the way Visio stores the third and fourth cells in the
Start row of a Geometry section, their names differ slightly from
what appears in the ShapeSheet window. The cell that appears to be
Geometryn.A1 is actually Geometryn.NoFill (Geometryn.X0 in ear-
lier versions of Visio). The cell that appears to be Geometryn.B1 is
actually Geometryn.NoShow (also Geometryn.A0). You can refer to
these cells by either name.

Geometryn.NoFill and Geometryn.NoShow cells in the ShapeSheet window

Getting a user-defined or custom properties cell. Certain shapes may
have cells named by the user or the shape developer. User-defined
cells are defined in the shape’s User-Defined Cells section; custom
property cells are defined in the shape’s Custom Properties section.
Each row in the User or Custom Properties section has a Value cell
that contains the value of the user-defined cell or property, and a
Prompt cell that can contain a string. A custom property row has ad-
ditional cells that control how the custom property can be used.

The Value cell is the default for a user-defined or custom property
row, so you can get the Value cell by specifying just the section and
name of the row. For example, to get the Value cell of a user-defined
cell named Vanishing_Point:

Dim shpObj as Visio.Shape

Dim celObj as Visio.Cell

...

Set celObj = shpObj.Cells("User.Vanishing_Point")



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 265

To get any other cell in a user-defined cell or custom property row,
you must include the name of the cell you want. For example, to get
the Prompt cell for a custom property named Serial_Number:

Dim shpObj as Visio.Shape

Dim celObj as Visio.Cell

...

Set celObj = _

shpObj.Cells("Prop.Serial_Number.Prompt")

For details about defining user-defined cells and custom properties in
the ShapeSheet window, see Chapter 4, “Enhancing shape behavior.”

Getting the result of a formula
To get the result of a formula, use one of the following methods of a
Cell object that represents the formula:

• Result returns the formula’s result in the units you specify.

• ResultIU returns the result in Visio internal units, inches or
radians.

• ResultInt returns the result as an integer.

• ResultStr returns the result as a string.

For example, the formulas that determine local coordinates of a shape’s
center of rotation are stored in its LocPinX and LocPinY cells. The
following statements get the result of the formula in the LocPinX cell:

Dim shpObj as Visio.Shape

Dim celObj as Visio.Cell

...

Set celObj = shpObj.Cells("LocPinX")

localCenterX = celObj.Result("inches")

The Result and ResultIU methods return both real numbers and in-
tegers as floating point numbers with 15 significant digits. When
getting the results of certain shape formulas, especially those that de-
termine a shape’s dimensions or vertices, you’ll probably want to
preserve this level of precision. To do this, assign numbers to Variant
or Double variables. This reduces the possibility of rounding errors
and maintains the same level of precision if you use the numbers to
re-create shapes in other Visio drawings.

Manipulating multiple formulas

You can get and set the results of multiple
formulas by using the GetResults and
SetResults methods.

For more details and examples, see the
online Visio Automation Reference.



2 6 6 C  H  A  P  T  E  R    1  3

You can specify units using any string that is acceptable to Visio. To
specify the Visio internal units (inches or radians), specify a null
string ("") for the units, or use the ResultIU method instead of
Result.

As an alternative to specifying units as a string, use the unit constants
defined in the Visio type library. For example, you can specify centi-
meters by using the constant visCentimeters.

Dim celObj as Visio.Cell

...

localCenterX = celObj.Result(visCentimeters)

Use visPageUnits to specify the units defined for the page or
visDrawingUnits to specify the units defined for the drawing.

Getting information from connected diagrams

Connected diagrams often illustrate relationships in a system,
whether between people in an organization or stages in a manu-
facturing process. It’s often easier to design relationships by
diagramming them, then using the diagram as a source of data about
those relationships.

Connects

Pages

Page

Masters

Master

Shapes

Shape

Documents

Document

Connect

ThisDocument

Connect object and related objects higher in the Visio object model



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 267

In Visio, a shape can be connected or glued to another shape in a
drawing. In the Visio object model, this relationship is represented by
a Connect object. You can analyze directed graphs, such as flowcharts,
or connected diagrams, such as organization charts, by getting prop-
erties of Connect objects for Shape, Master, and Page objects. You can
find out which shapes are connected and how they are connected.

Getting a Connect object
The Connects property of a Shape object returns a Connects collec-
tion that includes a Connect object for each shape, group, or guide to
which that shape is glued. The FromConnects property of a Shape
object returns a Connects collection that includes a Connect object
for each shape, group, or guide glued to that shape.

For example, suppose a drawing contains four shapes named A, B,
C, and D. Each shape has a control handle that is glued to a shape
named E.

E

A B C D

Four shapes glued to one shape in a drawing

To get the Connects collection of shape A, get the Connects property
of that Shape object. For example:

Dim shpObj as Visio.Shape

Dim consObj as Visio.Connects

...

Set consObj = shpObj.Connects

The Connects collection of shape A contains one Connect object that
represents A’s connection to E. This is also true of the Connects col-
lections of shapes B, C, and D. The Connects collection of shape E is
empty, because it’s not glued to the other shapes—they are glued to it.

The Connects collection of E is empty,
because it is not glued to A, B, C,

and D—they are glued to it.

The Connects collection of A, B, C, and D
each contains one Connect object.

Page and Master Connect objects

The Page and Master objects also have a
Connects collection and Connect object. For
an example, see ShowPageConnections
in “Iterating through the connections on a
page: an example” later in this chapter.



2 6 8 C  H  A  P  T  E  R    1  3

Or suppose a drawing contains two shapes named A and B and a 1-D
shape named C that connects A and B.

A

B
C

Two shapes connected by a 1-D shape

The Connects collection of shape C contains two Connect objects:
one representing its connection to A, and the other representing its
connection to B. The Connects collections of A and B are empty, be-
cause those shapes are not glued.

Getting Connect object properties
A Connect object has several properties that return information
about the connection it represents. You can determine the shapes that
are connected and the parts of the shapes that are connected—for
example, the top or side of the shape.

Determining which shapes are connected. The FromSheet and
ToSheet properties refer to Shape objects that represent the shapes
that are connected. A shape is defined internally in a spreadsheet
similar to that displayed in a ShapeSheet window. These properties
derive their names from this internal spreadsheet.

FromSheet returns the shape from which the connection originates;
ToSheet returns the shape to which the connection is made. For ex-
ample, suppose a drawing contains two shapes named Executive and
Position, and the Position shape is glued to the Executive shape. The
Position shape’s Connects collection contains one Connect object,
whose FromSheet property returns Position and whose ToSheet
property returns Executive.

To find out whether more than one shape is glued to a particular
shape, check the ToSheet property of each Connect object in a draw-
ing for identical NameID values. Continuing the example of the four
shapes A, B, C, and D, each glued to E, the ToSheet property of each
Connect object refers to shape E.



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 269

Determining which parts of shapes are connected. The FromPart and
ToPart properties return integer constants that identify the general
location of a connection on a shape. FromPart identifies the part of
the shape from which a particular connection originates; ToPart
identifies the part of the shape to which a particular connection is
made. Constants for valid FromPart and ToPart values are defined in
the Visio type library.

The following illustration shows the FromPart and ToPart values
that would be returned to indicate the parts involved in typical con-
nections in a drawing.

FromPart and ToPart values for typical connections in a drawing

The following table lists typical connections between shapes and the
constants for values returned by the FromPart and ToPart properties
of the shapes involved in the illustation above.

visGuideX

visGuideY

visLeftEdge

visControlPoint+n

visConnectionPoint+n

visBegin

visEnd



2 7 0 C  H  A  P  T  E  R    1  3

Connection FromPart ToPart

A control handle glued visControlPoint + n visConnectionPoint + n

to a connection point, visGuideX

guide, or guide point visGuideY

A 1-D shape glued to a connection point visBegin visEnd visConnectionPoint + n

A 2-D shape glued to visLeftEdge visBottomEdge visGuideX

a guide or guide point visCenterEdge visMiddleEdge visGuideY

visRightEdge visTopEdge

A 1-D shape glued to visBeginX visEndX visGuideX

a guide or guide point visBeginY visEndY visGuideY

Because a shape can have more than one control handle,
visControlPoint is a base that represents the first control handle
defined for a shape. If the value returned by FromPart is greater than
visControlPoint, it represents the (n+1)th control handle for that
shape. (To get n, subtract visControlPoint from the value returned
by FromPart.) This is also true of visConnectionPoint—if the value
returned by ToPart is greater than visConnectionPoint, it represents
the (n+1)th connection point.

Gluing to a selection handle, vertex, or location within a shape auto-
matically creates a connection point, which is why constants for these
items are not defined.

Getting the cells in a connection. The FromCell and ToCell properties
of a Connect object refer to Cell objects that represent the ShapeSheet
cells involved in a connection. You can get the cell’s formula, its result,
or any other property of the Cell object and use it as you would any
other Cell object—for example, as an argument to the GlueTo
method.

Analyzing connections in a drawing. When analyzing a connected
drawing, it often helps to know what kinds of shapes it contains. For
example, does the drawing use 1-D shapes as connectors between 2-D
shapes, or does it rely on control handles of 2-D shapes to draw lines
from one shape to another? Are all lines between shapes instances of
a connector master, or are some of them drawn with the line tool?

It also helps to remember that the connection data you gather from a
drawing created with the mouse may have different connections than



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 271

you might assume from looking at the drawing. For example, shapes
have a stacking order on the page that can affect what a shape is actu-
ally glued to. If the user glues two or more shapes to the same point
on another shape using the mouse, some shapes may actually be
glued to other glued shapes instead of to the intended shape, as the
following figure shows.

The stacking order of shapes can affect their connections.

Direction is another area of potential uncertainty. The parts of shapes
that are glued may or may not correspond to directions that are indi-
cated visually in a directed graph such as a flowchart. For example,
you can glue either the begin point or the end point of a 1-D shape to
another shape, and you can format either the begin point or the end
point with an arrowhead. If you assume that an arrowhead in a draw-
ing indicates an end point of a 1-D shape, you may not get an
accurate analysis of the drawing.

For more control over what is connected to what, enter connection
formulas in ShapeSheet cells, or glue the shapes from a program.

Iterating through the
connections on a page: an example
The ShowPageConnections macro in the \DVS\VBA SOLUTIONS\VBA

SAMPLES.VST\DVS MODULE iterates through the Connect objects for
the first page in the active Visio document. For each Connect object,
ShowPageConnections retrieves the shapes that are connected
(FromSheet and ToSheet) and the part of each shape that is con-
nected (FromPart and ToPart). It then compares the values of
FromPart and ToPart to each possible value, using the constants
from the Visio type library, and displays the corresponding string,
along with other data for the connection, in a list box on a user form.

If the resistor was glued first, it is glued
to the guide.

This diode may be glued to the guide, or
it may be glued to the resistor.



2 7 2 C  H  A  P  T  E  R    1  3

ShowPageConnections macro in \DVS\VBA SOLUTIONS\VBA SAMPLES.VST\DVS MODULE

Sub ShowPageConnections ()

Dim pagsObj As Visio.Pages ' Page collection of document

Dim pagObj As Visio.Page ' Page to work on

Dim fromObj As Visio.Shape ' Object from connection connects to

Dim toObj As Visio.Shape ' Object to connection connects to

Dim consObj As Visio.Connects ' Connects collection

Dim conObj As Visio.Connect ' Connect object from collection

Dim curConnIndx As Integer ' Loop variable for iterating through connections

Dim fromData As Integer ' Type of From connection

Dim fromStr As String ' String to hold description of From connection

Dim toData As Integer ' Type of To connection

Dim toStr As String' String to hold description of To connection

'Get the pages collection for the document

'Note the use of ThisDocument to refer to the current document

Set pagsObj = ThisDocument.Pages

'Get a reference to the first page of the collection

Set pagObj = pagsObj(1)

'Get the connects collection for the page

Set consObj = pagObj.Connects

'Make sure the list box is empty

UserForm2.ListBox1.Clear

'Loop through the connects collection

For curConnIndx = 1 To consObj.Count

'Get the current connect object from the collection

Set conObj = consObj(curConnIndx)

'Get the From information

Set fromObj = conObj.FromSheet

fromData = conObj.FromPart

'Get the To information

Set toObj = conObj.ToSheet

toData = conObj.ToPart



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 273

'Use fromData to determine type of connection

If fromData = visConnectError Then

fromStr = "error"

ElseIf fromData = visNone Then

fromStr = "none"

...

'Test fromData for visRightEdge, visBottomEdge, visMiddleEdge, visTopEdge,

'visLeftEdge,visCenterEdge, visBeginX, visBeginY, visBegin, visEndX, visEndY,

'visEnd

...

ElseIf fromData >= visControlPoint Then

fromStr = "controlPt_" & CStr(fromData - visControlPoint + 1)

Else

fromStr = "???"

End If

'Use toData to determine the type of shape the connector is connected to

If toData = visConnectError Then

toStr = "error"

ElseIf toData = visNone Then

toStr = "none"

ElseIf toData = visGuideX Then

toStr = "guideX"

ElseIf toData = visGuideY Then

toStr = "guideY"

ElseIf toData >= visConnectionPoint Then

toStr = "connectPt_" & CStr(toData - visConnectionPoint + 1)

Else

toStr = "???"

End If

'Add the information to the list box

UserForm2.ListBox1.AddItem "from " & fromObj.Name & " " & fromStr & " to " & _

toObj.Name & " " & toStr

Next curConnIndx

UserForm2.Show

End Sub



2 7 4 C  H  A  P  T  E  R    1  3

Storing Visio data

This section provides tips for storing text and numbers from a Visio
drawing. It also includes an example of a program that gathers data
about shapes from a drawing and stores it in a simple database.

Retrieving and storing text
No string returned by Visio exceeds 64 kilobytes; most strings are
much shorter. The following table lists common properties that re-
turn strings and the maximum size of each string.

Property Object Maximum size

Creator, Description, Document 63 characters each

Keywords, Subject,

Title

Data1, Data2, Data3 Document 64K characters each

Formula Cell 127 characters

Fullname Document 255 characters

Name Document 255 characters

Name Layer, Master, 31 characters

Page, Shape, Style

NameID Shape 36 characters

Path Document 255 characters

Prompt Master 255 characters

Text Shape, 64K characters

Characters

UniqueID Master, Shape 39 characters

NOTE  Visio stores formulas in parsed form rather than as ASCII
strings. Depending on the local language version of Visio being used,
a formula can exceed 127 characters when it is displayed in that lan-
guage. In Visio, however, the formula is truncated to 127 characters.
Keep this in mind if you retrieve formulas written in an English ver-
sion of Visio and set them in a German version, for example.

Unique IDs and custom properties

In more sophisticated database solutions
you can use unique IDs and custom proper-
ties of Visio shapes to ensure uniqueness of
database records and associate more data
with shapes in a Visio drawing. For details,
see “Associating data with shapes” in
Chapter 14, “Working with drawings and
shapes.”



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 275

Certain ShapeSheet cells, such as the Prompt cell in a user-defined or
custom property row, contain strings you may want to retrieve for
other uses. For example, to get the Prompt cell for a custom property:

Dim shpObj as Visio.Shape

Dim celObj as Visio.Cell

...

Set celObj = shpObj.Cells("Prop.Soc_Sec_Num.Prompt")

You can get the result of any cell as a string by using the ResultStr
method of a Cell object. For details, see the online Viso Automation
Reference.

Retrieving and storing numbers
Visio returns both real numbers and integers as floating point num-
bers with 15 significant digits. To preserve this level of precision,
assign numbers to Variant or Double variables and store numbers in
fields with the appropriate data type. This reduces the possibility of
rounding errors and maintains the same level of precision if you use
the stored numbers to create shapes in other Visio drawings.

True/false properties such as ReadOnly, Saved, or OneD and Boolean
values in ShapeSheet cells are FALSE if 0 and TRUE if nonzero.

Storing Visio data in a database: an example
The Visio Inventory program VBINV.EXE gathers data about shapes on
a drawing page, stores the data in a Microsoft Access database, and
displays the data on a user form. The source code for this program is
in \DVS\VB SOLUTIONS\VBINV.

For example, suppose you want an inventory of the shapes in the fol-
lowing drawing.



2 7 6 C  H  A  P  T  E  R    1  3

2868

2' - 10"

8'
 - 

5"
9'

 - 
2"

14
' -

 7
 1

/8
"

30 68

2 668
Built-in desk

Built-in bed
(see detail)

Built-in bed
(see detail)

Bedroom 1

Bedroom 2

Built-in desk

16
' -

 1
0 

1/
2"

Return air grille

22" counter
(double dresser under)

10" suppy air ducts
in soffet above

Shelves

Shelves

Shelves above

Sloping wall
(see elev.)

W
in

do
w

 
se

at

Shelves above

6" Ceramic
tile

48" Fluor.
w/ honeycomb

diffuser
Mirror

Electric
Forced
 air
furnace

5 06 8

Louvered bi-fold

6068

Louvered bi-fold

2668

26 6
8

28
68

Bu
ilt

-in
 d

es
k

Shelves

7' - 3 1/4"

27' - 8 1/4"

7' - 2 1/8" 9' - 7 1/8" 9' - 7 1/16" 7' - 10" 7' - 9 1/8"

21' - 6 15/16"

2' - 10 3/4"

2' - 8 15/16"

5 1/2"
9"6" 7' - 4 1/2" 11' - 8 5/8" 7' - 10 1/8"

1' - 4 1/2"

5' - 3 1/2"

1' - 2 27/32"

7' - 1 7/8"

3' - 3 1/4" 5' - 11 7/32"

2' - 6 3/8"

5'
 - 

4"

2'
 - 

7 
3/

8"

3' - 4 27/32"

1'
 - 

6"
1'

 - 
6"

2'
 - 

4"

17
' -

 7
"

3'
 - 

9 
1/

2"
5'

 - 
11

 7
/8

"

4'
 - 

1"
4'

 - 
0"

5'
 - 

9 
3/

4"
7'

 - 
0"

10
' -

 3
 3

/4
"

2'
 - 

7 
1/

4"
9"

9'
 - 

5 
1/

2"
3'

 - 
4 

1/
2"

5'
 - 

3 
1/

2"

1'
 - 

7 
3/

4"
8 

3/
4"

5'
 - 

3 
1/

8"

32
' -

 1
0 

7/
8"

7"
x2

1"
 g

lu
e-

la
m

 b
ea

m

7"
x2

1"
 g

lu
e-

la
m

 b
ea

m

7"
x2

1"
 g

lu
e-

la
m

 b
ea

m

7"
x2

1"
 g

lu
e-

la
m

 b
ea

m

36" high conc
wall below

Conc. line

A Visio drawing to inventory

The program gathers data from the drawing and displays it as shown.

The Visio Inventory program gathers data about shapes on a drawing page.



G E T T I N G   I N F O R M A T I O N   F R O M   V I S I O   D R A W I N G S 277

The CopyShapesToTable subroutine in QUERY.BAS gathers the data
from the drawing and stores it in the database. This subroutine is
called by the ReQuery procedure, which is called when a user clicks
the ReQuery button on the Visio Inventory form.

CopyShapesToTable in \DVS\VB SOLUTIONS\VBINV\QUERY.BAS

Private Sub CopyShapesToTable (shpsShapeColl As Object)

Dim I As Integer, strStatus As String

Dim MTable As Table, shpCurShape As Visio.Shape

Set MTable = m_dbDatabase.OpenTable(QI_MTABLE_NAME)

EmptyTable Mtable

For I = 1 To shpsShapeColl.Count 'Loop through shapes

strStatus = "Retrieving Shape " & Str$(I) & " of "

strStatus = strStatus & Str$(shpsShapeColl.Count)

StatusLineMsg strStatus 'Update status line

Set shpCurShape = shpsShapeColl(I) 'Get next shape

MTable.AddNew

MTable.Fields(IDX_NAME) = "" & shpCurShape.Name & " "

MTable.Fields(IDX_DATA1) = "" & shpCurShape.Data1 & " "

MTable.Fields(IDX_DATA2) = "" & shpCurShape.Data2 & " "

MTable.Fields(IDX_DATA3) = "" & shpCurShape.Data3 & " "

If shpCurshape.Type = visTypeShape Or shpCurshape.Type = visTypeGroup Then

MTable.Fields(IDX_TEXT) = "" & shpCurshape.Text & " "

Else

MTable.Fields(IDX_TEXT) = " "

End If

MTable.Fields(IDX_WIDTH) = "" & shpCurShape.Cells("Width") & " "

MTable.Fields(IDX_HEIGHT) = "" & shpCurShape.Cells("Height") & " "

MTable.Update

Next I

MTable.Close

ClearStatusLine

End Sub

Certain variables used by CopyShapesToTable are declared and set in
other procedures:

• ReQuery retrieves the Shapes collection of the active page and
assigns it to the object variable shpsShapeColl.



2 7 8 C  H  A  P  T  E  R    1  3

• InitDatabase creates a Database object named ~VBINV.MDB and
assigns it to m_dbDatabase. InitDatabase also creates a Table
object named Shapes_Table.

• The database ~VBINV.MDB and the table Shapes_Table are
represented by the global constants QI_DBASE_FILE_NAME
and QI_MTABLE_NAME, respectively. These constants and the
variable m_dbDatabase are declared in QUERY.BAS with other
constants and variables used by the program.

CopyShapesToTable clears Shapes_Table of its existing data, then
gets the Name, Data1, Data2, Data3, and Text properties of each
shape in the drawing. It also uses the Cells property of the Shape ob-
ject shpCurShape to retrieve the shape’s width and height:

shpCurShape.Cells("Width") & " "

shpCurShape.Cells("Height") & " "

These are actually compound references to the cells named Width
and Height in the Shape object’s Cells collection, and take advantage
of that object’s default method—ResultIU—to obtain the value cal-
culated by the formulas in those cells. These compound references are
equivalent to the following statements:

Dim celWidth As Visio.Cell

Dim celHeight As Visio.Cell

Set celWidth = shpCurShape.Cells("Width")

Set celHeight = shpCurShape.Cells("Height")

MTable.Fields(IDX_WIDTH) = _

"" & celWidth.ResultIU & " "

MTable.Fields(IDX_HEIGHT) = _

"" & celHeight.ResultIU & " "

The value of each property is stored in the corresponding field in
Shapes_Table. All of the fields in Shapes_Table have the data type
DB_TEXT and a length of 255 characters. Although the width and
height of a shape are numeric values, the programmer chose to define
all of the fields as text and to make each field a generous size, because
the number of records collected from a particular drawing is likely to
be small. If storage space is a consideration or you need to perform
calculations on the numeric data in the table, you would need to
choose appropriate data types and sizes.



Topics in this chapter

Creating and changing pages and backgrounds ......................................... 280

Working with layers .................................................................................... 283

Applying and creating styles ....................................................................... 288

Creating and changing shapes .................................................................... 292

Working with formulas ............................................................................... 298

Modifying a shape’s sections and rows ..................................................... 304

Associating data with shapes ..................................................................... 311

14
Working with
drawings and shapes

By now you’re familiar with most of the techniques you’ll use to work
with Visio from a program. Earlier chapters have covered the basics of
getting Visio objects, getting and setting properties, and using meth-
ods to create drawings and shapes or get information about them.

This chapter applies these techniques to more specialized tasks, such
as creating and changing pages and backgrounds in multiple-page
drawing files, drawing shapes that are not based on masters, creating
new masters, and modifying shapes. It describes how to work with
layers in a drawing and how to create and apply styles.

This chapter provides more detail on working with cell formulas and
describes how to modify shapes by working with their ShapeSheet
sections and rows. It also provides information on working with data
associated with shapes and pages.



2 8 0 C  H  A  P  T  E  R    1  4

Creating and changing pages and backgrounds

A Visio document can contain more than one page. Each page of a
document may contain a unique drawing, and some pages can serve
as backgrounds to other pages.

You can create multiple-page documents from a program by adding
pages and assigning backgrounds to them. You can also change page
settings such as the drawing scale and page width and height.

Adding pages to a drawing
Initially, a new document has one page. To create another page, use
the Add method of the document’s Pages collection. For example:

Dim pagsObj as Visio.Pages

Dim pagObj as Visio.Page

...

Set pagObj = pagsObj.Add

Creating and assigning background pages
When you want the same arrangement of shapes to appear in more
than one drawing, you can place the shapes on a background page.
For example, if your program creates drawings on multiple pages,
you might create a background page with header and footer shapes,
or title block and border shapes.

The same background page can be assigned to any number of fore-
ground pages. And although a foreground page can have only one
background page, a background page can have its own background
page, so it’s possible to construct a drawing of many pages.

To create a background page, add a page to the drawing and set its
Background property to TRUE. For example:

Dim backPagObj as Visio.Page

...

backPagObj.Background = True

To assign the background page to another page so that the
background’s shapes appear in the drawing window when that page is
displayed, set the foreground page’s BackPage property to the name
of the background page. For example:

Documents

Document

Pages

Page

ThisDocument

Page object and related objects higher in the
Visio object model



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 281

Dim pagObj as Visio.Page

...

pagObj.BackPage = "Floor Plan"

Changing page settings
Visual Basic for Applications (VBA) programs usually use a Visio
template to create a drawing, so you may not need to change settings
such as the drawing scale or page scale, because the template can pro-
vide the correct settings for the drawings created by your program. If
you need to change these settings, or if you create a drawing without
using a template but don’t want to use the Visio defaults, you can
change the page settings by changing page formulas.

To change a page formula, get the PageSheet property of a Page ob-
ject. This property returns a Shape object that represents the
formulas of the page.

You use the Cells property of this Shape object to retrieve a page cell
by name, as you would retrieve a cell for a shape on the drawing page.
You can then get or set the Cell object’s properties and use its meth-
ods to work with the page cell.

For example, suppose your program allows the user to change the
scale of a space plan from your program rather than from Visio. The
following statements set the scale of pagObj so that 1 foot in the
drawing equals 1/8 inch on the drawing page.

Dim pagSheetObj As Visio.Shape

Dim pagCelPageScale As Visio.Cell

Dim pagCelDrawScale As Visio.Cell

...

Set pagSheetObj = pagObj.PageSheet

Set pagCelPageScale = pagSheetObj.Cells("PageScale")

Set pagCelDrawScale = _

pagSheetObj.Cells("DrawingScale")

pagCelPageScale.Result("in") = 0.125

pagCelDrawScale.Result("ft") = 1.0

The page cells you’re mostly likely to work with are those that control
the drawing’s size and scale. Other page cells control the density of
the rulers and the grid, the layers defined for the page, actions, and
user-defined cells. For a list of page sections and cells, see Appendix B,
“ShapeSheet sections, cell references, and index constants.”

Page formulas for masters

A Master object also has a PageSheet
property that you can use to get the same
settings—drawing scale, page scale, and
so forth—for the master as you can for the
page. You might do this, for example, to find
out whether the scale of a master is appro-
priate for the drawing page before you drop
the master in the drawing.

ThePage shape

As an alternative to getting the PageSheetPageSheetPageSheetPageSheetPageSheet
property of a Page object, you can access
page settings by getting a special shape
called ThePage from the Page object’s
Shapes collection—both return the same
Shape object. The following statements
both return the same object:

Set shpObj = pagObj.PageSheet
Set shpObj = _
pagObj.Shapes.("ThePage")



2 8 2 C  H  A  P  T  E  R    1  4

Setting up pages and backgrounds: an example
The Stencil Report Wizard creates a multiple-page drawing that con-
tains an instance of each master in a stencil. The formValid function
in \DVS\SAMPLE APPLICATIONS\STNDOC\SELSTENC.FRM creates the
background page and sets its page scale and size to match the scale of
the masters that will appear in the report.

This function gets the scales of the master and background page from
their respective page sheets. The global variable gDocDraw has been
previously set by the Form_Load subroutine (also in SELSTENC.FRM)
to a new document based on the template that accompanies the Sten-
cil Report Wizard (STNDOC.VST). This template happens to be
unscaled, which is appropriate for many stencils, such as those with
flowchart shapes or shapes for other kinds of diagrams.

The formValid function in \DVS\SAMPLE APPLICATIONS\STNDOC\SELSTENC.FRM

Function formValid ()

...

' Declarations and unrelated statements have been omitted.

Set master = masters(1) ' assume all masters have same scale

Set masterSheet = master.Shapes("ThePage")

' Page setup for background page.

Set gPageBack = gDocDraw.Pages.Item(1)

gPageBack.Name = STR_BACKGROUND

gPageBack.Background = True

' Set page scale and size for background page.

Set pageSheet = gPageBack.Shapes("ThePage")

masterDrawingScale = masterSheet.Cells("DrawingScale").formula

masterPageScale = masterSheet.Cells("PageScale").formula

pageDrawingScale = pageSheet.Cells("DrawingScale").formula

pagePageScale = pageSheet.Cells("PageScale").formula

After retrieving the scales of the master and the page, formValid
compares the master’s scales with those of the page. If either of the
scales differ—as it would for a stencil of architectural shapes, for ex-
ample—it changes the page scale to the master’s scale. It also converts
the page’s height and width from unscaled to scaled values
(pageHeight * drawingScale / pageScale).



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 283

The formValid function (continued)

If (masterDrawingScale <> pageDrawingScale Or masterPageScale <> pagePageScale) Then

' Drawing Scale = Custom

pageSheet.Cells("DrawingScaleType").Formula = 3

pageSheet.Cells("DrawingScale").Formula = masterDrawingScale

pageSheet.Cells("PageScale").Formula = masterPageScale

' Drawing Size = Dimensions

drawingScale = masterSheet.Cells("DrawingScale")

pageScale = masterSheet.Cells("PageScale")

pageHeight = pageSheet.Cells("PageHeight")

pageWidth = pageSheet.Cells("PageWidth")

pageSheet.Cells("PageHeight").Formula = pageHeight * drawingScale / pageScale

pageSheet.Cells("PageWidth").Formula = pageWidth * drawingScale / pageScale

End If

End Function

Working with layers

A page can have named layers, which you can use to organize the
shapes on a page. You assign shapes to a layer in order to work with
categories of shapes—to show them or hide them, print them or not,
or protect them from changes—without having to place the shapes
on a background page or incur the overhead of grouping them. A
shape’s layer is independent of its stacking order or even its member-
ship in a group.

A master can be associated with layers. When a master with layers is
dropped in a drawing, the instance of that master is assigned to those
layers on the page. If the layers don’t already exist, Visio creates them.

When you work with layers from a program, you can find out which
layers are available in a drawing page or master, and which layers a
shape is assigned to in a drawing. You can assign shapes to layers, add
layers, and delete layers. You can also show or hide the layer, make it
printable or editable, and change other layer settings, similar to the
way you set layer properties in the Layer Properties dialog box or the
Layers section of the ShapeSheet window.

Pages

Page

Layers

Layer

Documents

Document

ThisDocument

Layer object and related objects higher in
the Visio object model



2 8 4 C  H  A  P  T  E  R    1  4

Identifying layers in a page or master
To identify the layers defined for a page or master, get its Layers prop-
erty. This property returns a Layers collection, which contains a Layer
object for each layer defined for the page or master. If the page or
master has no layers, its Layers collection is empty. A Layer object has
a Name property that returns the name of the layer as a string. This is
the default property of the object.

You can get a Layer object from the Layers collection by its name or
by its index within the collection. For example, to get a Layer object
for the layer named “Plumbing”:

Dim layerObj as Visio.Layer

Dim layersObj as Visio.Layers

...

Set layerObj = layersObj.Item("Plumbing")

The following example gets all of the layers in a collection and prints
their names in the Visual Basic Editor Debug window.

Dim pagObj as Visio.Page

Dim layersObj As Visio.Layers

Dim layerObj As Visio.Layer

Dim layerName As String

Set layersObj = pagObj.Layers

For i = 1 To layersObj.Count

Set layerObj = layersObj.Item(i)

layerName = layerObj.Name

Debug.Print layerName

Next i

As in most collections, objects in the Layers collection are indexed
starting with 1. Each layer in the collection is represented by one row
in the Layers section of the page or master.

A Layer object’s Index property tells you the index of a layer in the
Layers collection. A Layer object’s Row property tells you the corre-
sponding row in the Layers section of the page sheet. These will
usually be different numbers.

Masters

Master

Documents

Document

Layers

Layer

ThisDocument

Layer object and related objects higher in the
Visio object model



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 285

Identifying the layers a shape is assigned to
Use the LayerCount property of a Shape object to get the total num-
ber of layers the shape is assigned to, then use the Shape object’s
Layer property to get a particular layer. For example, this statement
gets the second layer the shape is assigned to:

Dim shpObj as Visio.Shape

Dim layerObj as Visio.Layer

...

Set layerObj = shpObj.Layer(2)

Check the properties of the Layer object, such as Name, to find out
more about that layer.

If the shape is not assigned to any layer, its LayerCount property re-
turns 0 (zero), and getting its Layer property will cause an error.

Assigning and removing shapes from layers
To assign a shape to a layer, add that Shape object to the Layer object.
For example:

Dim shpObj as Visio.Shape

Dim layerObj as Visio.Layer

...

layerObj.Add shpObj, preserveMembersFlag

The preserveMembersFlag argument should be 1 (TRUE) if you’re
assigning a group to the layer but you don’t want to affect the layer
membership of shapes within that group. Otherwise, use 0 (FALSE) to
assign a single shape or a group and each of its members to that layer.

To cancel a shape’s layer assignment, remove that Shape object from
the Layer object. The arguments are the same for removing a layer as
for adding one. For example:

Dim shpObj as Visio.Shape

Dim layerObj as Visio.Layer

...

layerObj.Remove shpObj, preserveMembersFlag



2 8 6 C  H  A  P  T  E  R    1  4

Adding and deleting
layers from pages and masters
To add a layer to a page or master, use the Add method with the Lay-
ers collection of a Page object or Master object. For example, to add a
new layer named “Plumbing” to a page:

Dim pagObj as Visio.Page

Dim layersObj as Visio.Layers

Dim layerObj as Visio.Layer

...

Set layersObj = pagObj.Layers

Set layerObj = layersObj.Add("Plumbing")

The name of the new layer must be unique to the page or the master.
If successful, the Add method returns a Layer object that represents
the new layer.

To delete a layer from a page or master, use the Delete method of the
Layer object. For example:

Dim layerObj as Visio.Layer

...

layerObj.Delete fDeleteShapes

The fDeleteShapes argument should be 1 (TRUE) to delete the shapes
assigned to the layer. Otherwise, use 0 (FALSE) to retain the shapes.
The shapes’ layer assignments are updated so that they no longer refer
to the deleted layer.

Changing layer settings
In Visio, you can change settings in the Layer Properties dialog box to
make a layer visible or printable or to set its highlight color, among
other things.

You change layer settings from a program by setting the formulas of
cells that control these settings. To do this, use the CellsC property of
a Layer object to get the cell that controls the setting you want to
change, then set the formula of that cell.



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 287

For example, to access the cell that contains the layer’s name, use a
statement such as the following:

Dim layerCellObj as Visio.Cell

...

Set layerCellObj = layerObj.CellsC(visLayerName)

TIP  You can also access layer settings by using the CellsSRC property
of a Shape object that represents a page sheet. For details, see “Work-
ing with formulas” later in this chapter.

To determine whether a layer is visible, use statements such as the fol-
lowing:

Dim layerObj as Visio.Layer

...

If layerObj.CellsC(visLayerVisible).ResultIU = 0 Then

text1.Text = "invisible"

Else

text1.Text = "visible"

End If

To hide a layer:

Dim layerCellObj as Visio.Cell

...

Set layerCellObj = layerObj.CellsC(visLayerVisible)

layerCellObj.Formula = 0

The constants visLayerName and visLayerVisible are defined in the
Visio type library. For a list of constants that control layer settings, see
Appendix B, “ShapeSheet sections, cell references, and index con-
stants.” For details about changing layer settings in Visio, search
online help for “layer properties box.”



2 8 8 C  H  A  P  T  E  R    1  4

Applying and creating styles

Styles offer the easiest and most versatile way of formatting shapes
from a program. A style is a named set of formatting attributes that
you can apply to a shape. A style can include text, line, or fill at-
tributes, or any combination of these.

When working with styles from a program, most often you’ll simply
apply styles that are already defined. You can, however, create new
styles from a program, either from scratch or based on existing styles.
This section describes how to apply and create Visio styles from a
program.

Identifying the styles in a document
To determine what styles are available in a document, get the Styles
property of a Document or ThisDocument object. The Styles prop-
erty returns a Styles collection, which represents the set of styles
defined for a document. The Name property of a Style object returns
the style name that appears in style lists and the dialog box in Visio.

The following example iterates through the document’s Styles collec-
tion and lists the style names in a list box on a user form.

ListStyles in \DVS\VBA SOLUTIONS\VBA SAMPLES.VST\DVS MODULE

Sub ListStyles ()

Dim stylsObj as Visio.Styles

Dim stylObj as Visio.Style

Dim curStyleIndx As Integer

Dim styleName as String

...

Set stylsObj = ThisDocument.Styles

UserForm2.ListBox1.Clear

For curStyleIndx = 1 To stylsObj.Count

Set stylObj = stylsObj(curStyleIndx)

styleName = stylObj.Name

UserForm2.ListBox1.AddItem styleName

Next curStyleIndx

UserForm2.Show

End Sub

ThisDocument default styles

During design time, you can change the
default style for the ThisDocument object
in the Visual Basic Editor. Select the
ThisDocument object in the Project Ex-
plorer, then change the styles listed in the
Properties window. The styles in the Prop-
erties window are the default line, text, and
fill styles for the ThisDocument object.

Documents

Document

Styles

Style

ThisDocument

Style object and related objects higher in the
Visio object model



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 289

Identifying and applying styles to shapes
A Shape object has properties that identify the text, line, and fill styles
applied to that shape.

• FillStyle identifies a shape’s fill style.

• LineStyle identifies a shape’s line style.

• TextStyle identifies a shape’s text style.

You can get these properties to determine a shape’s text, line, or fill
style, or you can set these properties to apply styles to the shape. The
following example draws a rectangle and applies two styles.

Dim pagObj as Visio.Page

Dim shpObj as Visio.Shape

...

Set shpObj = pagObj.DrawRectangle(5, 4, 3, 2)

shpObj.FillStyle = "10% Gray fill"

shpObj.LineStyle = "9pxl line"

You can also set the Style property to apply a multiple-attribute style
to a shape. If you get a shape’s Style property, however, it returns the
shape’s fill style, because a property cannot return multiple objects.

Instead of using styles, you can format any attribute of a shape by
setting the cell formulas that control those attributes. For details,
see Appendix B, “ShapeSheet sections, cell references, and index
constants.”



2 9 0 C  H  A  P  T  E  R    1  4

Preserving local formatting
Your program or your user can apply specific formatting attributes to
a shape in addition to its text, line, or fill styles. This kind of format-
ting is called local formatting. If you apply a style to that shape later,
the style overrides the local formatting unless you preserve it.

To preserve local formatting when applying a style from a program,
use one of the following properties instead of FillStyle, LineStyle, or
TextStyle:

• FillStyleKeepFmt

• LineStyleKeepFmt

• TextStyleKeepFmt

• StyleKeepFmt

These properties correspond to checking Preserve Local Formatting
in the Style dialog box.

Creating a style
To create a style from a program, use the Add method of a Styles col-
lection and specify the name of the new style. You can optionally
specify the name of a style on which to base the new style, and
whether the style includes text, line, and fill attributes.

For example, to create a new style named Caption based on the Nor-
mal style that includes only text attributes:

Dim stylsObj as Visio.Styles

Dim stylObj as Visio.Style

...

Set stylObj = stylsObj.Add("Caption", "Normal", 1, 0, 0)



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 291

To create a new style that is not based on another style, with text, line,
and fill attributes:

Dim stylsObj as Visio.Styles

Dim stylObj as Visio.Style

...

Set stylObj = stylsObj.Add("Street Sign","", 1, 1, 1)

You can change the style’s name by setting its Name property, or
change whether it includes text, line, or fill attributes by setting its
IncludesFill, IncludesLine, or IncludesText property. For details
about creating styles in Visio, search online help for “styles.”

Changing style attributes
A Style object has a Cells property you can use to set formulas for
ShapeSheet cells that control formatting of the style. The Cells prop-
erty of a Style object is similar to that of a Shape object, but it can
retrieve only cells that control formatting—that is, any cell from the
Character, Paragraph, Tabs, Line Format, Fill Format, or Text Block
Format sections.

For example, to change the font size of a style:

Dim fontsizeCellObj as Visio.Cell

Dim stylObj as Visio.Style

...

Set fontsizeCellObj = stylObj.Cells("Char.Size")

fontsizeCellObj.Formula = "18 pt"

For details about defining styles in Visio, see Chapter 7, “Managing
styles, formats, and colors.”



2 9 2 C  H  A  P  T  E  R    1  4

Creating and changing shapes

Most of the work your program does will be with shapes—creating
new shapes or changing the way shapes look. You’ll often create
shapes by dropping masters into a drawing page, as described in
Chapter 12, “Creating Visio drawings from a program.”

You can also draw original shapes and modify existing shapes, or
change a shape’s appearance and behavior by setting its formulas.

Creating shapes by drawing
You can draw lines, ellipses, and rectangles from a program by using
the DrawLine, DrawOval, and DrawRectangle methods of a Page
object. When you draw lines, ovals, and rectangles instead of drop-
ping a master, you supply coordinates for the two opposite corners of
the width-height box for the new shape.

0 21 3 4 5 6 7 8

0
2

1
3

4
5

6
7

8
9

10
11

Creating shapes with DrawLine, DrawRectangle, and DrawOval

The order in which you specify the corners doesn’t really matter
when you draw ellipses and rectangles. However, the order does mat-
ter for lines. It’s often important to know which end of a line is the
begin point and which is the end point.

For example, you may want to apply a line style that formats a line’s
end point with an arrowhead, or glue a line’s begin point to another
shape. When you draw a line from a program, the first x,y coordinate
pair determines the line’s begin point, and the second x,y coordinate
pair determines the line’s end point—the same as when you draw a
shape with the mouse.

Scaled drawings

When you draw or drop a shape in a scaled
drawing, specify the coordinates in drawing
measurements converted to inches. For
example, suppose you want to draw a rect-
angle from 3 ft, 4 ft to 5 ft, 6 ft. The statement
would look like this:

Dim pagObj as Visio.Page
...

pagObj.DrawRectangle(36,48,60,72)

pagObj.DrawLine(1,9,3,10)

pagObj.DrawRectangle(1,6,3,7)

pagObj.DrawOval(1,3,3,4)



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 293

Copying, cutting,
deleting, and duplicating shapes
You can copy, cut, delete, and duplicate shapes using the Copy, Cut,
Delete, and Duplicate methods of a Shape object. These methods
work in the same way as the corresponding menu commands in Visio.
You can use these methods with a Shape object whether or not the
corresponding shape is selected in the drawing window.

To duplicate a shape at a particular location on the page, use the
Drop method for a Page object. You supply a reference to the shape
you want to duplicate and to the coordinates where you want to posi-
tion the shape’s center of rotation, which is usually the same as the
shape’s pin. For example:

Dim pagObj as Visio.Page

Dim shpObj as Visio.Shape

...

Set shpObj = pagObj.Shapes("Sheet.1")

pagObj.Drop shpObj,1,2

To paste shapes from the Clipboard, use the Paste method of a Page
object. For details about pasting from the Clipboard, see the Paste
method in the online Visio Automation Reference.

Creating groups
A group is a shape composed of other shapes. To create a group from
a program, use the Group method of a Window object or a Selection
object. The following statement creates a group from the selected
shapes in a drawing window:

Dim winObj as Visio.Window

...

winObj.Group

M
FM

M
FM

The Group method creates a group from selected shapes.



2 9 4 C  H  A  P  T  E  R    1  4

To add a shape to a group, use the Drop method of a Shape object
that represents the group, with a reference to the shape you want to
add and the position of its pin, assuming it is a master, inside the
group. For example:

Dim grpObj as Visio.Shape

Dim shpObj as Visio.Shape

...

grpObj.Drop shpObj, 0.375, 0.125

grpObj shpObj grpObj after grpObj.Drop

FM FM

Use a group’s Drop method to add a shape to the group.

The coordinates 0.375, 0.125 are expressed in local coordinates of the
group. The pin of the added shape is positioned at those coordinates.

Creating masters from a program
To create masters from a program, you drop a shape from a drawing
page into a document (often a stencil document), as you do when
creating a master with the mouse. Supply a reference to the Shape ob-
ject that you want to make into a master to the Document object’s or
ThisDocument’s Drop method. For example:

Dim stnObj as Visio.Document

Dim shpObj as Visio.Shape

Set stnObj = Documents("basic shapes.vss")

stnObj.Drop shpObj, 0, 0

Before you can drop a Shape object in a stencil, the stencil must be
opened as an original rather than read-only, as is typically the case
when a stencil is opened by a template (.VST) file. To open a stencil as
an original, use the Open method:

0.375, 0.125

0, 0



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 295

Dim stnObj as Visio.Document

...

Set stnObj = Documents.Open("basic shapes.vss")

A master often consists of several components, which, for best perfor-
mance, should be grouped. Visio does not require the components of
a master to be grouped in the stencil. However, if they are not, Visio
automatically groups the shapes when the master is dropped in a
drawing. This increases the time required to create an instance of the
master.

Working with selected shapes
You can access a shape’s properties and methods from a program
whether the shape is selected or not. You can, however, create a Selec-
tion object to work with multiple shapes. A Selection object is similar
to a Shapes collection in that it represents a set of Shape objects and
has an Item and a Count property. Unlike a Shapes collection, a Se-
lection object represents only the shapes that are selected.

You can get a Selection object that represents the shapes that are se-
lected in a window, or create a Selection object that represents shapes
you specify from any Shapes collection.

The order of items in a Selection object follows the order in which the
corresponding shapes are selected. The first item returned is the first
shape selected.

Getting shapes that are selected in a window. To work with shapes the
user has selected in a window, get the Selection property of that Win-
dow object.

M

A Selection object represents shapes the user has selected in a drawing window.

Keeping a Selection object current

Whether shapes in a window are selected
or deselected by the user or by your pro-
gram, a Selection object represents the
selection that exists when that object is re-
trieved by your program, and subsequent
operations that change the selection in the
drawing window have no effect on the ob-
ject. It’s good practice to create a Selection
object just before you need it to ensure that
it represents the shapes that are actually
selected.

Windows

Window
Selection

Selection object and related objects higher
in the Visio object model



2 9 6 C  H  A  P  T  E  R    1  4

The following example gets the Selection object of the active window:

Dim selectObj as Visio.Selection

selectObj = ActiveWindow.Selection

If all of the shapes on a page are selected, the Selection object of the
window and the Shapes collection of the page are the same set of
shapes. If nothing is selected, the Selection object is empty and its
Count property returns 0. If your program requires a selected shape,
you might check the Selection property of the active window to make
sure it contains at least one object.

Dim selectObj as Visio.Selection

Set selectObj = ActiveWindow.Selection

If selectObj.Count = 0 Then

MsgBox "You must select a shape first." _

, , "Select shape"

Else

'Continue processing

End If

In Visio, each drawing window can have different shapes selected,
even if some windows are showing the same drawing page. Only se-
lected shapes and groups are included in the Selection object; shapes
subselected within a group are not included.

Adding and removing shapes in selections. To add an object to a selec-
tion, use the Select method of the Selection object and specify the
Shape object to select. You can add a shape to a selection or cancel the
selection of a shape without affecting the other selected shapes.

The constants visSelect and visDeselect, defined in the Visio type
library, control the action that is performed. For example, the follow-
ing statement adds a shape to those already in the Selection object:

Dim selObj as Visio.Selection

Dim shpObj as Visio.Shape

...

selObj.Select shpObj,visSelect



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 297

The following statement cancels the selection of that shape:

Dim selObj as Visio.Selection

Dim shpObj as Visio.Shape

...

selObj.Select shpObj,visDeselect

Selecting and deselecting shapes in a window. To select a shape from a
program, use the Select method of a Window object and specify the
Shape object to select. You can add a shape to a selection or cancel the
selection of a shape without affecting the other selected shapes. For
example, the following statement adds a shape to those already se-
lected in a drawing window:

Dim winObj as Visio.Window

Dim shpObj as Visio.Shape

...

winObj.Select shpObj,visSelect

To select all the shapes on a drawing page, use the Window object’s
SelectAll method; to deselect all selected shapes, use the DeselectAll
method. If you get a Selection object after using SelectAll, the new
Selection object includes a Shape object for each shape on the draw-
ing page displayed in that window. If you get a Selection object after
using DeselectAll, the new Selection object is empty.

Performing operations on selected shapes. After you have a Selection
object, you can perform operations on the selected shapes, similar to
the actions you can perform in a drawing window.

For example, you can use the Copy, Cut, Delete, or Duplicate
method of a Window or Selection object to copy, cut, delete, or dupli-
cate selected shapes.

Dim selectObj as Visio.Selection

...

selectObj.Delete



2 9 8 C  H  A  P  T  E  R    1  4

Or you can join or fragment selected shapes using the Union, Com-
bine, and Fragment methods. These methods correspond to the
Union, Combine, and Fragment commands in Visio, which create
one or more new shapes that replace the selected shapes.

Dim selectObj as Visio.Selection

...

selectObj.Union

For details about what you can do with a Selection object, see the list
of properties and methods for that object in the online Visio Automa-
tion Reference.

Finding out where a selection came from. To find out whether a Selec-
tion object gets its shapes from a Page object, a Master object, or a
Shape object (group), check the Selection object’s ContainingPage,
ContainingMaster, and ContainingShape properties.

If the shapes are on a page, the ContainingPage property returns that
Page object (and ContainingMaster returns Nothing). Conversely, if
the shapes are in a master, ContainingMaster returns that Master ob-
ject and ContainingPage returns Nothing.

If the shapes are in a group, the ContainingShape property returns a
Shape object that represents the group. Otherwise, this property re-
turns a Shape object that represents the page sheet of the master or
page that contains the shapes.

Working with formulas

To work with a formula, you use the Cells property of a Shape object
to get a Cell object. After you retrieve a Cell object, you can get or set
the cell’s formula or its value using the methods and properties of the
Cell object.

You can alter a shape more dramatically by working with whole sec-
tions and rows of its formulas. For example, you can add Geometry
sections, delete vertices, or change the row type of segments, convert-
ing them from lines to arcs or vice versa. For details, see “Modifying a
shape’s sections and rows” later in this chapter.

Union, Combine, and Fragment

Before using Union, Combine, or Frag-
ment, make sure that only the shapes you
want to affect are selected. These methods
delete the original shapes, so any smart for-
mulas in the original shapes are lost and the
Selection object that represents the shapes
is no longer current. For details about using
Union, Combine, and Fragment in Visio,
see the online Visio Automation Reference.



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 299

Getting a Cell object
To get a Cell object, use the Cells property of a Shape object and
specify the cell name. You can use any valid cell reference with the
Cells property.

For example, to get the PinX cell of a shape:

Dim shpObj as Visio.Shape

Dim pinXCellObj as Visio.Cell

...

Set pinXCellObj = shpObj.Cells("PinX")

To get the y-coordinate of the shape’s fourth connection point:

Dim shpObj as Visio.Shape

Dim conYCellObj as Visio.Cell

...

Set conYCellObj = shpObj.Cells("Connections.Y4")

For a list of valid ShapeSheet cell names, see the online Visio Automa-
tion Reference.

Pages

Page

Masters

Master

Shapes

Shape

Documents

Document

Cell

ThisDocument

Cell object and related objects higher in the Visio object model

Getting a Cell object by section, row, and cell indexes. You can use the
CellsSRC property to retrieve any cell by its section, row, and indexes.
For a list of index constants you can use to access cells, see Appen-
dix B, “ShapeSheet sections, cell references, and index constants.”

Shortcuts for shape formulas

You can exercise fine control over a shape
by setting shape formulas, but often chang-
ing a single characteristic can require
setting more than one formula. For example,
the location of a shape on a page or within a
group is defined by two ShapeSheet cells—
PinX and PinY.

You can change certain characteristics of
shapes more easily by using the following
methods and properties of Shape objects:

• SetCenter moves a shape’s pin to the lo-
cal coordinates you specify.

• OneD determines whether a shape be-
haves as a 1-D shape or a 2-D shape. If
OneD is TRUE, the shape is 1-D; if OneD is
FALSE, the shape is 2-D.

• SetBegin moves a 1-D shape’s begin
point to the parent (page or group) coor-
dinates you specify.

• SetEnd moves a 1-D shape’s end point to
the parent coordinates you specify.



3 0 0 C  H  A  P  T  E  R    1  4

For example, to get the Font cell in the first row of a shape’s Charac-
ter section:

Dim shpObj as Visio.Shape

Dim fontCellObj as Visio.Cell

...

Set fontCellObj = shpObj.CellsSRC _

(visSectionCharacter, visRowCharacter + 0, _

 visCharacterFont)

If a section contains more than one row and you want to refer to a cell
in the second row or beyond, add an integer offset to the row constant
for that section. Although you can use a row constant without an off-
set to get the first row of a section, it’s good practice to use the row
constant as a base and add an integer offset to it, starting with 0 for
the first row. For example:

visRowScratch + 0 'First row of the Scratch section

visRowScratch + 1 'Second row of the Scratch section

visRowScratch + 2 'Third row of the Scratch section

The position of a section or row can change as a result of operations
that affect other sections and rows. For example, if a Scratch section
contains three rows and you delete the second row, the third row
shifts to become the second row. VisRowScratch + 2 is no longer a
valid reference because the section no longer has a third row.

You can also use section and row indexes to add or delete sections or
rows from a shape or to iterate through rows in a section. For details,
see “Modifying a shape’s sections and rows” later in this chapter.

Changing cell formulas
To change a cell’s formula, set the Formula property of a Cell object
to a string that is a valid formula for that cell. For example, to set the
formula of a shape’s LocPinX cell to = 2 * Width:

Dim shpObj as Visio.Shape

Dim cellObj as Visio.Cell

...

Set celObj = shpObj.Cells("LocPinX")

celObj.Formula = "2 * Width"



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 301

If you omit the equal sign from a formula string, Visio automatically
adds it to the formula.

If the formula string contains quotation marks—for example, if
inches are specified as " rather than inches or in.—use two quotation
mark characters ("") to pass one quotation mark to Visio. For ex-
ample, to set the formula of a shape’s LocPinX cell to = 3 * 2.5":

celObj.Formula = "3 * 2.5"""

Replacing a formula with a result
Every cell has a formula, and every formula evaluates to a result. You
can see this in the ShapeSheet window by choosing Formulas or Val-
ues from the View menu. If you’re viewing formulas, a cell might
display Width*0.5. If you’re viewing values, and if Width is 5.0 in., the
same cell would display 2.5 in.

Occasionally you may want to replace a formula with its result ex-
pressed as a constant, either to improve the performance of a shape,
or because you no longer need to preserve its formulas. Visio evalu-
ates formulas any time you retrieve a Cell object or make a change to
a shape that affects its formulas. Depending on how often this occurs
while your program is executing, it can have a noticeable effect on
performance.

To replace a formula with its result, use the cell’s Result property to
set its formula. This is similar to setting the cell’s Formula prop-
erty—it’s a shortcut for evaluating the formula and replacing it with
the equivalent constant as the cell’s new formula.

For example, suppose a shape’s LocPinX formula is = 3 in. + 1 ft/2,
which evaluates to 9 inches. To replace that formula with its result,
use the following statement:

Dim cellLocPinX as Visio.Cell

...

celLocPinX.Result("inches") = _

celLocPinX.Result("inches")

After this statement executes, the LocPinX cell’s formula is = 9 in.



3 0 2 C  H  A  P  T  E  R    1  4

The Result property returns a cell’s result as a floating point number
expressed in Visio internal units, but there are times when you might
prefer a different data type:

• ResultIU returns the result as a floating point number expressed
in Visio internal units.

• ResultInt returns the result as an integer.

• ResultStr returns the result as a string.

ResultStr takes a units argument like any other result method, effec-
tively giving you a way to convert between any units. You might also
use ResultStr to access cell formulas that contain strings, such as the
Prompt cell in a custom property row.

Overriding guarded formulas
Visio has a GUARD function that protects a cell’s formula from
changes. If a cell’s formula is protected with GUARD, attempting to set
the formula with the Formula, Result, or ResultIU property causes
an error. You can, however, change the cell’s formula as follows:

• Use ResultForce or ResultIUForce instead of Result or ResultIU.

• Use FormulaForce instead of Formula.

Be cautious when overriding guarded formulas. Often a shape devel-
oper guards the formulas of a master shape to protect its smart
behavior against inadvertent changes by a user. If you override these
formulas, the shape may no longer behave as originally designed.

Moving shapes by setting formulas: an example
The sample Visual Basic program NUDGE.EXE moves selected shapes
in the active window by setting formulas for the pin of a 2-D shape,
or the begin and end points for a 1-D shape. The program uses a user
form with four buttons that call the Nudge subroutine with the pa-
rameters shown.

Sections and rows you can add

A shape can have only one of each kind of
section except Geometry (represented by
the constant visSectionFirstComponent
+ n). If a shape already has a particular
section and you attempt to add it, you’ll
get an error. You can use the shape’s
SectionExists property to find out whether
it has a section, then add it if necessary.

As an alternative, you can simply add a row.
If the section doesn’t already exist, it is cre-
ated automatically. The row is added, and
an error does not occur.

You cannot add or delete rows from the
visSectionCharacter, visSectionParagraph,
or visSectionTab sections.



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 303

Nudge in \DVS\VB SOLUTIONS\NUDGE\NUDGE.FRM

Sub Nudge (dx As Double, dy As Double)

'Call Nudge as follows:

'Nudge 0, -1 Move down one unit

'Nudge -1, 0 Move left one unit

'Nudge 1, 0 Move right one unit

'Nudge 0, 1 Move up one unit

On Error GoTo lblErr

Dim selObj As Visio.Selection

Dim shpObj As Visio.Shape

Dim unit As Double

Dim i As Integer

' Establish a base unit as one inch

unit = 1

Set appVisio = GetObject(, "visio.application")

Set selObj = appVisio.ActiveWindow.Selection

' If the selection is empty, there’s nothing to do.

' Otherwise, move each object in the selection by the value of unit

For i = 1 to selObj.Count

Set shpObj = selObj(i)

Debug.Print "Nudging " ; shpObj.Name; " ("; shpObj.NameID; ")"

If (Not shpObj.OneD) Then

shpObj.Cells("PinX").ResultIU = (dx * unit) + shpObj.Cells("PinX").ResultIU

shpObj.Cells("PinY").ResultIU = (dy * unit) + shpObj.Cells("PinY").ResultIU

Else

shpObj.Cells("BeginX").ResultIU = (dx * unit) + shpObj.Cells("BeginX").ResultIU

shpObj.Cells("BeginY").ResultIU = (dy * unit) + shpObj.Cells("BeginY").ResultIU

shpObj.Cells("EndX").ResultIU = (dx * unit) + shpObj.Cells("EndX").ResultIU

shpObj.Cells("EndY").ResultIU = (dy * unit) + shpObj.Cells("EndY").ResultIU

EndIf

Next i

lblErr:

Exit Sub

End Sub



3 0 4 C  H  A  P  T  E  R    1  4

Modifying a shape’s sections and rows

The ShapeSheet window displays most of the formulas that define a
shape, organized in sections such as Shape Transform, Geometry, and
Connection Points. However, a shape may have more formulas than
are shown in the ShapeSheet window. Certain other objects, such as
drawing pages, masters, and styles, also have formulas.

You can change certain characteristics of a shape, or those of a page
or master, by adding and deleting sections and rows. You can also it-
erate through sections or rows to perform the same operation on
each item, such as listing all of a shape’s Geometry formulas.

To refer to sections and rows in a program, you use constants defined
in the Visio type library. For a list of these constants and how they
correspond to sections and cells in the ShapeSheet window, see Ap-
pendix B, “ShapeSheet sections, cell references, and index constants.”

Adding sections and rows
In many cases, you’ll want to add an entire section to a shape. For ex-
ample, you might add a Geometry section to create a shape with
multiple paths, or a Scratch section to serve as a working area for
building complex formulas. Before you can use a newly added sec-
tion, you need to add at least one row to the section. Depending on
the kind of row you add, you may also need to set the formulas of
cells in the row.

To add a section, use the AddSection method for a Shape object. For
example, to add a Scratch section to a shape:

Dim shpObj as Visio.Shape

...

shpObj.AddSection visSectionScratch

To add a row to a section, use the AddRow method and specify the
section, row, and row tag. When you add a row to a Geometry section,
the row tag indicates the type of row to add—for example,
visTagLineTo indicates a LineTo row. For any other section, use a row
tag of 0 as a placeholder. For example, to add a row to a Scratch section:

Dim shpObj as Visio.Shape

...

shpObj.AddRow visSectionScratch, visRowScratch + 0, 0

Sections and rows you can delete

You cannot delete the section 
visSectionObject, although you can delete
rows within that section. You cannot delete
rows in the following sections:

••••• visSectionCharactervisSectionCharactervisSectionCharactervisSectionCharactervisSectionCharacter

••••• visSectionParagraphvisSectionParagraphvisSectionParagraphvisSectionParagraphvisSectionParagraph

••••• visSectionTabvisSectionTabvisSectionTabvisSectionTabvisSectionTab

For best results, don’t delete sections or
rows that define fundamental characteris-
tics of a shape, such as the last
remaining Geometry section
(visSectionFirstComponentvisSectionFirstComponentvisSectionFirstComponentvisSectionFirstComponentvisSectionFirstComponent) or the 1-D
Endpoints row (visRowXForm1DvisRowXForm1DvisRowXForm1DvisRowXForm1DvisRowXForm1D),
the component row (visRowComponentvisRowComponentvisRowComponentvisRowComponentvisRowComponent),
or the MoveTo row (visRowVertex + 0visRowVertex + 0visRowVertex + 0visRowVertex + 0visRowVertex + 0) in
a Geometry section.



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 305

Row tag constants are defined in the Visio type library. The following
table lists row tags with the rows they represent in a Geometry section
in the ShapeSheet window.

Row tag Geometry row

visTagComponent Display properties (NoFill and NoShow cells

in a Start row)

visTagMoveTo MoveTo row (X and Y cells in a Start row)

visTagLineTo LineTo row

visTagArcTo ArcTo row

visTagEllipticalArcTo EllipticalArcTo row

visTagSplineBeg SplineStart row

visTagSplineSpan SplineKnot row

Deleting sections and rows
Deleting a section automatically deletes all of its rows and cells.
To delete a section, use the DeleteSection method of a Shape object.
For example, the following statement deletes the Scratch section of
a shape:

Dim shpObj as Visio.Shape

...

shpObj.DeleteSection visSectionScratch

Deleting a nonexistent section does not cause an error.

You can also delete a row from a section. For example, you can re-
move a vertex from a shape by deleting the row that defines the vertex
from the shape’s Geometry section. The following statement deletes
the last vertex of a rectangle:

Dim shpObj as Visio.Shape

...

shpObj.DeleteRow visSectionFirstComponent + 0, _

visRowVertex + 3

Changing row types

Changing the row type of a Display Proper-
ties row (visRowComponent) or a MoveTo
row (visRowVertex + 0) is not recom-
mended—it can cause a shape to behave in
unexpected ways.

Changing line or arc segments to spline
rows or vice versa requires an understand-
ing of how splines are defined in the
shape's Geometry section. For details, see
Appendix A, “Arcs and splines in Visio.”



3 0 6 C  H  A  P  T  E  R    1  4

Deleting a vertex row

Changing the type of a segment
In Visio, you can define a segment as a line, arc, elliptical arc, or spline
by setting the type of row or rows that represent the segment. From a
program, you can do this by setting the RowType property of a Shape
object.

For example, the following statement converts the first segment of a
shape to a line segment.

shpObj.RowType(visSectionFirstComponent + 0, _

visRowVertex + 1) = visTagLineTo

Changing the row type of a vertex row

Working with inherited data
A shape may not have a local copy of all the data that appears in the
ShapeSheet window or that you can access from a program. The
shape behaves as if the data were local, but some data may be local
and other data may be inherited from a master or a style.

Everything you do when adding, modifying, or deleting data is done
locally. If the data doesn’t exist locally—that is, if the shape inherits
the data from a master or style—Visio first creates a local copy of the
data, then performs the requested action. Once data exists locally, in-
heritance is severed, and changes to the data in the master no longer
affect the shape’s local data.

After the row type is
changed, the shape
looks like this.

This arc segment is represented by
visRowVertex + 1.

This vertex is represented by
visRowVertex + 3.

After deleting the
vertex row, the shape
looks like this.



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 307

For example, if a shape is an instance of a master that has connection
points, the shape inherits the master’s connection points. The shape
has the same connection point behavior as the master and will dis-
play the inherited Connection Points section in its ShapeSheet
window. However, the shape doesn’t have a local copy of the Connec-
tion Points data—instead, it inherits that data from the master. If you
attempt to delete this shape’s Connection Points section, the Connec-
tion Points data doesn’t change because there is no local copy to
delete, and the shape continues to inherit its Connection Points data
from the master.

To override inheritance for an entire section, either delete each row in
the section, or delete the entire section and add a new, empty section
of the same type. In the latter case, you delete the section to make sure
no local copy already exists, which would cause an error if you at-
tempted to add the section.

To restore an inherited section, delete the local copy. The shape inher-
its that section again from the master or style.

Iterating through sections and rows
You can perform the same operation on multiple sections or rows by
iterating through them, using the following Shape object properties
to limit the iteration loop:

• GeometryCount represents the number of Geometry sections for
a shape.

• RowCount represents the number of rows in a section. This
includes “hidden” rows such as row 0 of a Geometry section. Use
the row constant as the base and add an integer offset, starting
with 0 (zero).

• RowsCellCount represents the number of cells in a row.

The following example iterates through the rows and cells in a shape’s
Geometry section and uses CellsSRC to retrieve each cell. It then dis-
plays each cell’s formula in a list box on a user form.



3 0 8 C  H  A  P  T  E  R    1  4

IterateGeometry in \DVS\VBA SOLUTIONS\VBA SAMPLES.VST\DVS MODULE

Sub IterateGeometry ()

'This example assumes the active page contains a shape.

Dim shpObj As Visio.Shape ' shape object

Dim curGeomSect As Integer ' Section number for accessing geometry section

Dim curGeomSectIndx As Integer ' Loop variable for geometry sections

Dim nRows As Integer ' number of rows in section

Dim nCells As Integer ' number of cells in row

Dim curRow As Integer ' current row number (0 based)

Dim curCell As Integer ' current cell index (0 based)

Dim nSects As Integer ' number of geometry sections in shape

Set shpObj = ActivePage.Shapes(1)

UserForm2.ListBox1.Clear

nSects = shpObj.GeometryCount

For curGeomSectIndx = 0 To nSects - 1

curGeomSect = visSectionFirstComponent + curGeomSectIndx

nRows = shpObj.RowCount(curGeomSect)

For curRow = 0 To (nRows - 1)

nCells = shpObj.RowsCellCount(curGeomSect, curRow)

For curCell = 0 To (nCells - 1)

UserForm2.ListBox1.AddItem _

shpObj.CellsSRC(curGeomSect, curRow, curCell).LocalName & _

": " & shpObj.CellsSRC(curGeomSect, curRow, curCell).Formula

Next curCell

Next curRow

Next curGeomSectIndx

UserForm2.Show

End Sub

You can also use logical position constants to set the beginning or end
of a loop. These constants are most useful when you want to perform
the same operation on all sections, rows, or cells, but the order in
which the operation is performed is not important. (If the order in
which an operation is performed is important, use a row constant
with an offset rather than a logical position constant.) For example,
you might want to print all the formulas for a shape. For a list of logi-
cal position constants, see Appendix B, “ShapeSheet sections, cell
references, and index constants.”



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 309

Adding a Geometry
section to a shape: an example
A basic shape in Visio consists of one or more components, or paths.
Each path is a sequence of connected segments. In most shapes, a seg-
ment is either a line segment or an arc segment, which can be a
circular or an elliptical arc. Each path is represented by a Geometry
section, and each segment is represented by a row in a Geometry
section.

To add a Geometry section to a shape, use the AddSection method
with visSectionFirstComponent to insert the section before existing
Geometry sections, or visSectionLastComponent to append the sec-
tion after existing Geometry sections. For example:

Dim shpObj as Visio.Shape

...

shpObj.AddSection visSectionLastComponent

After adding a Geometry section, you must add at least two rows. (Vi-
sio does not automatically add rows to a section added from
a program.) Use the AddRow method with the following row tags:

• visTagComponent determines whether the component defined
by the Geometry section can be filled and whether it is hidden
or visible.

• visTagMoveTo determines the first vertex, or starting point, of
the component.

You can add additional vertex rows using the row tags visLineTo,
visArcTo, or visEllipticalArcTo. Each vertex row defines the local
coordinates of a vertex and the type of segment—line, circular arc,
or elliptical arc—that connects the vertex with the previous one.

You can add spline rows using the row tags visTagSplineBeg and
visTagSplineSpan. Precede the spline start row (visTagSplineBeg)
with a start row (visTagMoveTo) or a vertex row, and use
visTagSplineSpan to add spline knot rows. For details about spline
rows, see Appendix A, “Arcs and splines in Visio.”



3 1 0 C  H  A  P  T  E  R    1  4

The following example inserts a Geometry section before other exist-
ing Geometry sections of a shape. It adds the component row, the
MoveTo row, and one LineTo row. (These are the rows you typically
need to define a straight line.) It then sets cell formulas in each row to
draw the line diagonally across the shape’s width-height box.

AddGeometry in \DVS\VBA SOLUTIONS\VBA SAMPLES.VST\DVS MODULE

Sub AddGeometry ()

Dim shpObj as Visio.Shape

Dim iSection as Integer

Dim i as Integer

'Set an error handler to catch the error if no shape is selected.

On Error GoTo errNoShp

Set shpObj = ActiveWindow.Selection(1)

On Error GoTo 0

iSection = shpObj.AddSection(visSectionFirstComponent)

shpObj.AddRow iSection, visRowFirst + 0, visTagComponent

shpObj.AddRow iSection, visRowVertex + 0, visTagMoveTo

For i = 1 To 4

shpObj.AddRow iSection, visRowVertex + i, visTagLineTo

Next i

shpObj.CellsSRC(iSection, visRowVertex + 0, visX).Formula = "Width * 0.25"

shpObj.CellsSRC(iSection, visRowVertex + 0, visY).Formula = "Height * 0.5"

shpObj.CellsSRC(iSection, visRowVertex + 1, visX).Formula = "Width * 0.5"

shpObj.CellsSRC(iSection, visRowVertex + 1, visY).Formula = "Height * 0.25"

shpObj.CellsSRC(iSection, visRowVertex + 2, visX).Formula = "Width * 0.75"

shpObj.CellsSRC(iSection, visRowVertex + 2, visY).Formula = "Height * 0.5"

shpObj.CellsSRC(iSection, visRowVertex + 3, visX).Formula = "Width * 0.5"

shpObj.CellsSRC(iSection, visRowVertex + 3, visY).Formula = "Height * 0.75"

shpObj.CellsSRC(iSection, visRowVertex + 4, visX).Formula = "Geometry1.X1"

shpObj.CellsSRC(iSection, visRowVertex + 4, visY).Formula = "Geometry1.Y1"

'Exit the procedure bypassing the error handler

Exit Sub

errNoShp:

MsgBox "Please select a shape then try again.", vbOKOnly, DVS_TITLE

End Sub



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 311

The following illustration shows the shape before and after inserting
the Geometry section.

Inserting a Geometry section in a shape

Note that visRowVertex with no offset, or with an offset of 0, refers to
the MoveTo row. When adding vertex rows, always add an offset of 1
or more to visRowVertex so you don’t inadvertently replace the
MoveTo row, which can cause the shape to behave in unexpected ways.

For details about Geometry cells and the formulas they can contain,
search online help for “geometry section.”

Associating data with shapes

If you’re developing a solution that combines Visio with a database,
you’ll be interested in ways you can associate data with shapes. Visio
shapes and pages can store additional data in user-defined cells or as
custom properties. Shapes and masters can have unique IDs you can
use to distinguish identical shapes in a drawing or to track the origi-
nal source of a master.

For details about creating user-defined cells and custom properties in
Visio, see Chapter 4, “Enhancing shape behavior.”



3 1 2 C  H  A  P  T  E  R    1  4

Working with user-defined
cells and custom properties
User-defined cells are a convenient way for a program to store a value
in a cell and reliably find it again. User-defined cells are preferable to
Scratch cells for this purpose, because other programs can write to
the same Scratch cell, destroying its value for your program, or they
can add or delete Scratch rows, making your Scratch cell reference in-
valid. If your user-defined cells have names that are likely to be
unique to your program (for example, names prefixed with your
company acronym or another identifier), other programs are unlikely
to inadvertently use your cells, and they can add or delete other user-
defined cells without affecting yours.

Custom properties are a way to associate database-like fields with a
shape or a page. Although you can get and set custom properties ex-
clusively from a program, you’ll often collect values filled in by the
user in Visio. For example, you might provide masters that prompt
the user to fill in certain data when a master is dropped in a drawing
and then use a program to gather that data from the user’s drawings.

Custom Properties dialog box: an example

Adding user-defined and custom property rows. To add a user-defined
or custom property row from a program, use the AddNamedRow
method of a Shape object. For example, to add a user-defined cell
named Latitude to a page:

Dim pagObj as Visio.Page

Dim shpObj As Visio.Shape

...

set shpobj = pagObj.Shapes("Germany")

shpObj.AddNamedRow visSectionUser, "Latitude", 0

How unique is a unique ID?

If a shape or master has a unique ID, you
can assume that no other shape or master
in the same document has the same unique
ID. Visio generates unique IDs using the
same technology that OLE uses to guaran-
tee unique object IDs and never reuses
them, so the chance of Visio generating du-
plicate unique IDs is extremely remote, even
on different systems.

Under certain circumstances, however, it is
possible to duplicate a unique ID. If you
copy a drawing file or save it under a differ-
ent file name, all of its shapes and their
unique IDs are copied. If you then copy a
shape from the new file and paste it back
into the original, the original file contains
two shapes with identical unique IDs. To en-
sure unique IDs after copying a file, delete
all the unique IDs from one of the files and
generate new ones.

If you copy a master, the copy has the same
unique ID as the original until you edit the
copy—then Visio assigns a different unique
ID to the edited master.



W O R K I N G   W I T H   D R A W I N G S   A N D   S H A P E S 313

To get the Value cell of the new Latitude row:

Dim shpObj as Visio.Shape

Dim celObj as Visio.Cell

...

Set celObj = shpObj.Cells("User.Latitude")

For details about adding sections and rows to a shape or page, see
“Modifying a shape’s sections and rows” earlier in this chapter.

Generating and using unique IDs
Unique IDs are typically used to create a persistent link between a
shape or master and a record in an external database. Unique IDs al-
low applications to bind data to shapes more reliably than is possible
with shape names and name IDs. Database applications that can use
unique IDs include facilities management, geographic information
systems, and mechanical assemblies, in which identical shapes in a
drawing may represent different records in a database.

A unique ID is stored internally as a 128-bit value and is passed as
a null-terminated 39-character string, formatted as in the following
example:

{2287DC42-B167-11CE-88E9-0020AFDDD917}

Unique IDs for shapes. By default, shapes do not have unique IDs; they
must be generated by a program. To generate a unique ID for a shape,
use the UniqueID method of a Shape object. For example:

Dim shpObj as Visio.Shape

...

IDString = shpObj.UniqueID(visGetOrMakeGUID)

If the shape already has a unique ID, this statement gets the ID; if the
shape does not have a unique ID, the statement creates one.

To find out whether a shape has a unique ID, use the following state-
ment. If the shape has no unique ID, this statement returns a null
string ("").

Dim shpObj as Visio.Shape

...

IDString = shpObj.UniqueID(visGetGUID)



3 1 4 C  H  A  P  T  E  R    1  4

To delete a shape’s unique ID, use the following statement:

Dim shpObj as Visio.Shape

...

shpObj.UniqueID visDeleteGUID

Some actions cause Visio to delete a shape’s unique ID automatically.
If you cut a shape to the Clipboard and paste it once, or drag a shape
to a different drawing window, its unique ID is preserved. However, if
you paste the same shape from the Clipboard a second time or dupli-
cate the shape by holding down the Ctrl key and dragging, its unique
ID is deleted.

Unique IDs for masters. A master always has a unique ID that is gener-
ated by Visio and cannot be deleted or reassigned. A master’s unique
ID provides a link to the original master, because copies of masters
retain their original unique IDs, making them more persistent than
names.

For example, when you drop a master from a standalone stencil into a
drawing file, a copy of that master is placed in the drawing file stencil.
If you then drop a master with the same name from a different stencil
into the same drawing file, Visio alters the second master’s name so
that names are unique within the drawing file stencil. The two mas-
ters still have different unique IDs, so you can distinguish them from
each other this way also.

A master’s unique ID changes only when you edit the master—then
Visio assigns the master a new unique ID.

Getting a shape or master by its unique ID. You can pass a unique ID as
an argument to the Item method of a Shapes or Masters collection.
For example:

Dim shpsObj as Visio.Shapes

Dim shpObj as Visio.Shape

...

Set shpObj = shpsObj.Item("{2287DC42-B167-11CE- _

88E9-0020AFDDD917}")



Topics in this chapter

Handling events with ShapeSheet formulas .............................................. 316

Writing code behind events ........................................................................ 318

Handling events with Event objects ........................................................... 322

15
Handling
events in Visio

An event is something that happens. In Visio, events happen as a re-
sult of a user’s actions. For example, the user may open or close
documents, drop or delete shapes on the drawing page, edit the text
of shapes, or alter shape formulas. Knowing that such events have oc-
curred can be extremely useful, because it allows your solution to
handle user actions that can otherwise be difficult to predict.

This chapter describes how to handle Visio events in these ways:

• Defining a cell formula in a shape’s Events section.

• Writing code behind the event in the Visual Basic for Applica-
tions (VBA) project of a Visio document. This allows a solution to
handle events related to documents, such as saving a document.

• Creating Visio Event objects that run programs when specified
events occur.

• Creating Visio Event objects that send notifications to special-
purpose objects (called notification sinks). This enables two-way
communication between a standalone solution and Visio.

This chapter describes handling events in VBA or Visual Basic (VB)
programs. For information about handling events in C++ programs,
see Chapter 20, “Programming Visio with C++.”



3 1 6 C  H  A  P  T  E  R    1  5

Handling events with ShapeSheet formulas

You can define how a shape responds to a few user actions by writing
event formulas. An event formula typically performs an action in re-
sponse to the event, such as running a macro or add-on, or
navigating to another drawing page. Whenever the user performs one
of these actions, the formula in the corresponding cell is evaluated
and the action is performed.

Events that trigger formulas
Visio supports five events that trigger formulas in the following cells
in the shape’s Events section.

Events section cells

Events cell Event that triggers the formula

TheText The shape’s text or formatting is changed.

EventXFMod The shape’s position, size, or orientation on the page

is changed.

EventDblClick The shape is double-clicked.

EventDrop A new instance is created by pasting, duplicating,

or Ctrl+dragging a shape, or by dragging and

dropping a master.

TheData Reserved for future use.

By entering formulas in these cells, you define how the shape re-
sponds to each event. Unlike most formulas, event formulas are
evaluated only when the event happens, not when you enter the for-
mula or when cells referenced by the formula change. This means
that Events cells behave somewhat differently than other ShapeSheet
cells:

• The value displayed in an Events cell may appear to be out of date
or inconsistent with the cell’s formula. For example, suppose you
entered this formula in the EventDblClick cell:

= Width > 1 in.

This formula returns 1 if the expression is TRUE, or 0 if it is
FALSE. However, the formula is evaluated when the user double-
clicks the shape, not when the shape is resized, so the value
displayed in the cell may not indicate what is true for the shape.

About the Double-Click command

The Visio Double-Click command creates
event formulas that perform various actions
when the user double-clicks a shape.
Visio stores the event formula in the shape’s
EventDblClick cell. Experiment with Double-
Click to learn about event formulas or to
create formulas you can modify.



H A N D L I N G   E V E N T S   I N   V I S I O 317

• The order of evaluation and the number of times an event is
evaluated are unpredictable. For example, if a shape’s text is
formatted and the shape is resized, the order in which these
events trigger evaluation of event formulas is unknown. However,
each event triggers its formula at least once.

Functions for event formulas
Visio includes several built-in functions that perform actions rather
than produce a value, making them especially useful in event formu-
las. For details about function syntax, search online help for
“functions.”

• CALLTHIS("procedure",["project"],[arg1,arg2,…])

Calls a procedure in a VBA project and passes the procedure a
reference to the formula’s shape. For example:

CALLTHIS("myProc",,Height,Width)

• GOTOPAGE("pagename")

Displays the page in the currently active window. For example:

GOTOPAGE("Page-2")

A page’s name is displayed in the title bar of its window and in
the Page dialog box (Go To submenu). GOTOPAGE can also be
used with a URL to display a Web site.

• OPENFILE("filename")

Opens a file in a new window.

• OPENSHEETWIN()

Opens and displays the ShapeSheet window that contains this
formula.

• OPENTEXTWIN()

Opens the text block for the shape that contains this formula.

• PLAYSOUND("filename"|"alias",isAlias,beep,synch)

On systems with a sound card, plays the sound recorded in
filename, or plays the system alias for a sound if isAlias is a
nonzero number. If the sound cannot be played, Visio can beep
to indicate an error. Sounds can be played asynchronously or
synchronously.

Using event formulas

Because event formulas are evaluated each
time the event occurs, they can affect the
usability and performance of your shapes.
In general:

Use event formulas sparingly. Avoid event
formulas for frequent events such as mov-
ing or sizing the shape (EventXFModEventXFModEventXFModEventXFModEventXFMod) or
editing its text (TheTextTheTextTheTextTheTextTheText). Handling these
events can interrupt the user’s work flow
and make shapes awkward to use.

Keep event formulas simple. A complex for-
mula takes longer to evaluate, which slows
the performance of the shape.

Know that some actions take longer than
others. Even a simple event formula may
trigger a time-consuming action. For
example, it takes longer to launch a
standalone executable add-on than to run a
macro, and longer to navigate to a Web
page than to navigate to another page in the
same Visio document.



3 1 8 C  H  A  P  T  E  R    1  5

For example:

PLAYSOUND("chord.wav", 0, 0, 0)

plays the wave audio file CHORD.WAV asynchronously with no
warning beep.

• RUNADDON("name")

Launches the specified macro or add-on. To pass arguments to a
macro, include them in the string. To pass arguments to an add-
on, use the RUNADDONWARGS function.

• SETF("cell", formula)

Sets the formula of a cell in the same or another shape. For
example:

SETF("Scratch.A1", Scratch.A1+1)

evaluates the formula =Scratch.A1+1 and sets the formula of the
Scratch.A1 cell to the result, which is its previous value
incremented by 1.

Writing code behind events

If you’ve written any Visual Basic code, you’ve almost certainly writ-
ten event procedures. An event procedure contains code that is
executed when an event occurs. For example, a button on a Visual
Basic form usually has an event procedure to handle the Click event.
In VBA, this is called code behind events.

You can handle certain Visio events by putting code behind them in
the VBA project of a Visio document. For example, the following pro-
gram handles two events, DocumentCreated and ShapeAdded, to
keep count of shapes added to a drawing that are based on a master
called Square:

• The DocumentCreated event handler runs when a new drawing
is based on the template that contains this code. The handler
initializes an integer variable, nSquares, which is used to store the
count.

Simulating events with DEPENDSON

DEPENDSON(cellref[,cellref2,...]) creates a
cell reference dependency. This function
has no effect in an Events section cell, but
you can use it to simulate events in other
ShapeSheet sections such as the Scratch
section. For example, if you put the following
formula in a Scratch cell, Visio opens the
shape’s text block whenever the shape is
moved:

OPENTEXTWIN() +
DEPENDSON(PinX, PinY)

For another example, if you put the following
formula in a Scratch cell, the add-on
MYPROG.EXE is launched whenever the
shape is flipped in either direction.

RUNADDON("myprog.exe") +
DEPENDSON(FlipX, FlipY)



H A N D L I N G   E V E N T S   I N   V I S I O 319

• The ShapeAdded event handler runs each time a shape is added
to the drawing page, whether the shape is dropped from a stencil,
drawn with a drawing tool, or pasted from the Clipboard. The
handler checks the Master property of the new shape and, if the
shape is based on the Square master, increments nSquares.

Code behind ThisDocument in \DVS\VBA SOLUTIONS\VBA EVENT SAMPLE.VST

' Number of squares added to drawing

Dim nSquares As Integer

Private Sub Document_DocumentCreated()

' Initialize number of squares added

nSquares = 0

End Sub

Private Sub Document_ShapeAdded( ByVal Shape As Visio.IVShape )

Dim mastObj As Master

' Get the Master property of the shape

Set mastObj = Shape.Master

' Check whether the shape has a master. If not, the shape was created locally.

If Not ( mastObj Is Nothing ) Then

' Check whether the master is "Square"

If mastObj.Name = "Square" Then

' Increment the count for the number of squares added

nSquares = nSquares + 1

End If

End If

MsgBox "Number of squares: " & nSquares, vbInformation, "Developing Visio Solutions"

End Sub

To put code behind an event:

1. Open the VBA Project Editor. (From the Visio Tools menu,
choose Macro, then choose Visual Basic Editor.)

2. In the Project Explorer, double-click the object for which you
want to put code behind an event—for example, ThisDocument.

If the object doesn’t appear in the Project Explorer, you may need
to open the drawing’s object folder. Double-click the drawing
name, then double-click the folder named Visio Objects.



3 2 0 C  H  A  P  T  E  R    1  5

When you double-click the object, Visio opens the Visual Basic
code window and creates an empty procedure for the object’s
default event—for ThisDocument, the default event is
DocumentCreated.

3. Choose the event you want to handle from the Procedure list at
the top right of the code window—for example,
DocumentSaved.

Visio creates an empty event procedure for that event.

4. Fill in the event procedure with the code you want to execute
when the event occurs.

For details about using the VBA Project Editor in Visio, see Chapter 2,
“Tools for creating solutions.”

Declaring a variable “with events”
You can use the VBA keyword WithEvents to declare an object vari-
able for the Visio object whose events you want to handle within a
class module or the Visio Document object in your VBA project. For
example:

Private WithEvents m_winObj as Visio.Window

In addition to the usual access to an object’s properties and methods,
this declaration gives the object variable the capacity to handle events
fired by the object assigned to that variable. When you select the vari-
able in the Object list in the Visual Basic Editor, the Procedure list
shows the events that can be fired by that object. When you choose an
event from the Procedure list, VBA creates an empty event procedure
that you can fill in with code to handle the event.

For example, the following event procedure prints the names of se-
lected shapes in the Debug window whenever the selection changes in
the window represented by m_winObj:

Public Sub m_winObj_SelectionChanged(ByVal _

Selection as Visio.IVSelection)

Dim i as Integer

For i = 1 to Selection.Count

Debug.Print Selection(i).Name

Next i

End Sub



H A N D L I N G   E V E N T S   I N   V I S I O 321

To assign a window to m_winObj, use a statement such as the
following:

Set m_winObj = Visio.ActiveWindow

Because this statement must run before the SelectionChanged event
procedure, you might put this and similar statements in a public
subroutine, which you call from an event procedure for an event
that you know will execute before SelectionChanged, such as
DocumentOpened.

Handling events with a sink object
You can streamline the process of handling events fired by a particu-
lar kind of Visio object by defining a class to receive the events. A class
that receives events is sometimes called an event sink or a sink object.

For example, the following class module defines a sink class called
ShapeSink that declares the object variable m_shpObj using the
WithEvents keyword. It contains a procedure, InitWith, that assigns a
particular Shape object, aShape, to m_shpObj. The class module also
contains an event handler for the CellChanged event, which can be
fired by a Shape object—in this case, the Shape object represented by
aShape.

ShapeSink class module in \DVS\VBA SOLUTIONS\VBA WITHEVENTS SAMPLE.VSD

Dim WithEvents m_shpObj As Visio.Shape

Public Sub InitWith(ByVal aShape As Visio.Shape)

Set m_shpObj = aShape

End Sub

Private Sub m_shpObj_CellChanged(ByVal Cell As Visio.IVCell)

Debug.Print Cell.Shape.Name & " " & Cell.Name & " changed to =" & Cell.Formula

End Sub

Actions in the drawing window, such as moving, sizing, or connecting
a shape, can change a shape’s formulas. The CellChanged event fires
once for each formula that changes. This event handler responds by
listing the name of the Shape object, the name of the cell, and the new
formula in the VBA Immediate window. (If the Immediate window is
not visible, choose Immediate Window from the View menu in the
Visual Basic Editor to see the output of the Debug.Print statement.)

Handling events for multiple objects

You can use the WithEventsWithEventsWithEventsWithEventsWithEvents keyword in a
class module to create specialized event
handlers for any number of shapes of a par-
ticular type. For example, in an architectural
floor plan, you might want to handle events
from each window shape that is dropped in
the drawing, to monitor whether a window
is positioned appropriately in a wall if the
window is moved. Or, you might want to
handle events from each wall shape, to
monitor whether a wall has been moved or
changed.

To create such event handlers, write a
ShapeAddedShapeAddedShapeAddedShapeAddedShapeAdded event handler that creates an
instance of your class module and assigns a
reference to the newly added shape to a
variable defined WithEventsWithEventsWithEventsWithEventsWithEvents inside the
class module—for example, m_shpObj.
Then, write event procedures for the events
you want to handle for m_shpObj—for ex-
ample, m_shpObj_CellChanged.

You can use this technique to set up any
number of event handlers for any type of ob-
ject whose number can vary at run time,
such as pages and windows as well as
shapes. For an example, see VBA
WITHEVENTS SAMPLE.VSD on the Visio 5.0 CD.



3 2 2 C  H  A  P  T  E  R    1  5

To put this event handler to work, the program must create an in-
stance of the sink class and pass it a reference to a Shape object. You
can do this in whatever way makes sense for your program, but this
example happens to use code behind the ShapeAdded event in the
document. This example also uses a collection to manage the sink ob-
jects so it can release a sink object when its corresponding shape is
deleted. For details about collections, see your VBA documentation.

ShapeAdded event handler in ThisDocument in \DVS\VBA SOLUTIONS\VBA WITHEVENTS SAMPLE.VSD

Private Sub Document_ShapeAdded(ByVal Shape As Visio.IVShape)

Dim sinkObj As New ShapeSink

sinkObj.InitWith Shape

sinks.Add sinkObj, Str(Shape.ID)

End Sub

When a shape is added to the drawing page, the ShapeAdded handler
creates a new ShapeSink object and assigns it to the variable sinkObj.
Next, it calls the object’s InitWith procedure with a reference to the
newly added shape, which associates sinkObj with the new shape.
Whenever any formula of the shape changes, sinkObj ’s CellChanged
event handler runs. This situation persists until either sinkObj is re-
leased or another Shape object is assigned to the m_shpObj variable
of sinkObj, which causes the first object to stop firing events and the
second object to start.

Handling events with Event objects

In earlier chapters, you’ve seen how to control Visio objects by using
Automation to get and set properties and to invoke methods. This
one-way communication has its limitations: Your program can tell
Visio what to do, but it cannot find out what is happening in Visio
without explicitly checking for each possible case.

You can handle Visio events from a standalone Visual Basic, C, or
C++ program by using Event objects. An Event object pairs an event
with an action—either to run an add-on or to notify an object in
your program that the event occurred. When the event occurs, the
Event object fires, triggering its action.



H A N D L I N G   E V E N T S   I N   V I S I O 323

When you create an Event object, you need to decide:

• The scope in which the Event object should fire. The scope
determines the object whose EventList collection the Event object
is added to.

• The action to perform when the event occurs—run an add-on or
send a notification to an already running program. The action
determines which method you use to create the Event object.

• The event or events that should trigger the action. This deter-
mines the event code you specify when you create the Event
object.

If the event’s action is to send a notification, you must also tell Visio
which object to notify.

Deciding the scope of an event
An event has both a subject and a source, which are typically different
objects. The subject of an event is the object to which the event actu-
ally happens. For example, the subject of a ShapeAdded event is the
shape that was added.

The source of an event is the object that produces the event. Most
events have several potential sources. You create an Event object by
adding it to the EventList collection of the source object, so any object
that has an EventList collection can be a source of events.

The source object you choose determines the scope in which the
event fires—the higher the source object in the object hierarchy, the
greater the scope. For example, if the source is a Page object, the
ShapesAdded event fires whenever a shape is added to that page.
If the source is the Application object, the ShapesAdded event fires
whenever a shape is added to any page of any document that is open
in the instance of Visio.

Visio doesn’t act on an event unless it has an Event object for it. Ob-
viously, the more often an Event object fires, the more likely it is to
affect the performance of your solution. Therefore, when you pick a
source object, think first about the scope in which you want to handle
the event. Then add the Event object to the EventList collection of the
lowest object in the hierarchy that can fire the Event object in the
scope you want.

Sources of events in Visio

In Visio 5.0, the following objects can be
sources of events:

Application Selection
Cell Shape
Characters Shapes
Document Style
Documents Styles
Master Window
Masters Windows
Page
Pages

For a list of the events that can be produced
by a particular source object, use the Object
Browser in the Visual Basic Editor. Events
are marked with a lightning bolt. Or, in the
Visio Automation Reference, you can
search for the object, or search for a par-
ticular event by name.



3 2 4 C  H  A  P  T  E  R    1  5

If the Event object’s action is to send a notification, both the source
and subject objects are passed to the event procedure in the event sink
object.

Deciding the action to perform
After you’ve decided what the source object should be, you can create
the Event object by adding it to the EventList collection of the source
object. The action you want to trigger determines which method you
use:

• Run an add-on or other external program. To create an Event
object for this action, you use the Add method of the source
object’s EventList collection.

• Call an event procedure of another object in your program. To
create an Event object for this action, you use the AddAdvise
method of the source object’s EventList collection.

Indicating the event code
You indicate the event you’re interested in by supplying its event code
to the Add or AddAdvise method. Event codes are prefixed with
visEvt in the Visio type library.

In some cases, an event code is a combination of two or more codes.
For example, the event code for the ShapeAdded event is visEvtAdd
+ visEvtShape. The event code of PageAdded is visEvtAdd +
visEvtPage.

In some cases you can combine codes to indicate an interest in mul-
tiple events with a single Event object. For example, the event code
visEvtAdd + visEvtPage + visEvtShape indicates that you’re inter-
ested in both ShapeAdded and PageAdded. The event code
visEvtAdd + visEvtDel + visEvtPage indicates that you’re interested
in both PageAdded and PageDeleted.

When an Event object fires, Visio passes the event code for the event
that actually occurred, even if the Event object’s event code indicates
multiple events. To continue the last example, if a page is added, Visio
passes the event code visEvtAdd + visEvtPage.

Event codes and the Visio type library

Although event codes appear with other
Visio constants in the Visio type library,
some cannot be used from the type library
because of the way it handles large hexa-
decimal values. Any constant with the high
bit set (that is, a constant with a hexadeci-
mal value greater than &H7FFF, or 32,767)
causes a numeric overflow condition, and
some Visio event codes happen to fall in
this range.

You can prevent the overflow condition by
including VISCONST.BAS in your project. The
Visual Basic interpreter checks for constant
definitions in all available modules before it
checks the type library, so if VISCONST.BAS is
present it will provide definitions of event
codes, and the numeric overflow condition
will not occur. For details about importing a
file into a VBA project, see “Programming
Visio with VBA” in Chapter 2, “Tools for cre-
ating solutions.” For more information about
VISCONST.BAS, see Chapter 19, “Program-
ming Visio with Visual Basic.”



H A N D L I N G   E V E N T S   I N   V I S I O 325

Creating an Event object that runs an add-on
When you create an Event object that runs an add-on, you supply the
event code for the event or events that you’re interested in and the ac-
tion code visActCodeRunAddon. You also supply the name of the
add-on to run and, optionally, a string of arguments to pass to the
add-on when the Event object fires.

When the Event object fires, Visio passes the argument string as com-
mand line arguments if the add-on is an .EXE file, or as the
lpCmdLineArgs field of the VAOV2LSTRUCT structure passed to an
add-on implemented by a Visio library (.VSL). For details about Visio
libraries, see Chapter 20, “Programming Visio with C++.”

For example, the following code creates an Event object that runs the
add-on SHOWARGS.EXE and passes the string “/args=Shape Added!”
as a command line argument. The Event object is added to the
EventList collection of the document.

FormLoad in \DVS\VB SOLUTIONS\VB EVENT SAMPLE.FRM

Dim docObj As Visio.Document

Private Sub Form_Load()

Dim eventsObj As Visio.EventList

...

' Create a new drawing.

' An instance of Visio has already been assigned to g_appVisio.

Set docObj = g_appVisio.Documents.Add("")

' Get the EventList collection of this document.

Set eventsObj = docObj.EventList

' Add an Event object that will run an add-on when the event fires.

eventsObj.Add visEvtShape + visEvtAdd, visActCodeRunAddon, _

"SHOWARGS.EXE", "/args=Shape added!"

...

End Sub

When a shape is added to any page in the document, the ShapeAdded
event fires and triggers the action, which is to run the add-on
SHOWARGS.EXE, whose sole purpose is to display its command line
arguments—in this case, the string “Shape added!”.



3 2 6 C  H  A  P  T  E  R    1  5

Storing an Event object with a document. Certain source objects can
store certain Event objects with a Visio document. This is sometimes
called persisting an event. An Event object can be stored with a docu-
ment if it meets the following conditions:

• The Event object’s action must be to run an add-on. Event objects
that send notifications cannot be stored. If an Event object can be
stored, its Persistable property is TRUE.

• The source object must be able to persist the event. In the Visio
version 5.0 product line, Document, Page, and Master objects can
do this. If a source object can persist events, its PersistsEvents
property is TRUE.

Whether a persistable Event object actually persists depends on the
setting of its Persistent property. If the Event object is persistable,
Visio assumes that it should be stored with the document, so the ini-
tial value of its Persistent property is TRUE. If you do not want Visio
to store the Event object, set its Persistent property to FALSE.

NOTE  Before you attempt to change an Event object’s Persistent
property, make sure its Persistable property is TRUE. Setting the Per-
sistent property of a nonpersistable event causes an error.

Creating an Event object
that sends a notification
An Event object can send a notification to an already running pro-
gram. Creating this kind of Event object differs from creating one
that simply runs an add-on in these ways:

• You define an object in your program—not a Visio object—to
receive the notification when it is sent. This kind of object is
sometimes called a notification sink or sink object.

• You write an event procedure in your sink object to handle
notifications when they are received.

• Your program creates instances of sink objects and the Event
objects in Visio at runtime. Because this kind of Event object uses
references, it cannot be stored with a Visio document and must
be created each time the program runs.

NOTE  If you’re writing an external program in Visual Basic, you must
use Visual Basic 4.0 or later to receive event notifications from Visio.



H A N D L I N G   E V E N T S   I N   V I S I O 327

The following diagram shows how a program interacts with objects
in Visio to receive event notifications.

Add-On

Source Object
pSource

EventL is t
Object

pEvtList

S ink
Object

Event
Object

pEvt

pEvt

even tCode
pSink

In this diagram, pSource is a reference to the source object in Visio.
This is used to get a reference to the source object’s EventList collec-
tion, which is assigned to pEvtList.

The program uses pEvtList.AddAdvise to create the Event object,
which is assigned to pEvt. With AddAdvise, the program passes a ref-
erence to the sink object to which Visio sends the notification when
the Event object fires.

The connection between the source object and the sink object lasts
until the program calls pEvt.Delete, until the program releases its last
reference on the source object, or until Visio terminates. When Visio
terminates, it issues a BeforeQuit event, which the program should
handle by releasing all of its references to source objects. After Visio
issues BeforeQuit, it releases all of its references to sink objects in the
program.

Defining the sink object. A sink object is a non-Visio object you define
to receive the notifications that Visio sends. At a minimum, the sink
object must be programmable (that is, it must support the OLE
IDispatch interface) and it must expose an event procedure named
visEventProc, declared exactly as shown on the next page. (You can
give the sink object whatever additional functionality makes sense for
your program, but Visio requires only visEventProc.) When an Event
object fires, Visio calls the visEventProc procedure for the corre-
sponding sink object.

Typical events

Here’s a partial list of the events supported
by Visio 5.0:

AppActivated
BeforeDocumentClose
BeforePageDelete
BeforeQuit
BeforeSelectionDelete
BeforeWindowClose
CellChanged
DocumentOpened
DocumentSaved
PageAdded
ShapeAdded
TextChanged
WindowSelectionDeleted

For a complete list, choose List of Events
from the Contents page of the Visio Auto-
mation Reference.



3 2 8 C  H  A  P  T  E  R    1  5

To define a sink object in Visual Basic or VBA:

1. Choose Class Module from the Insert menu and give the new
object whatever name you want to use.

Typically, you would set the object’s Public property to TRUE, but
that isn’t required. If you wish, you can code predefined methods
such as Initialize and Terminate or add your own methods to the
class.

2. Write an event procedure called visEventProc to handle notifica-
tions when they are received.

The visEventProc procedure must be declared with the following
parameters:

Public Sub visEventProc( _

event As Integer, _

source As Object, _

id As Long, _

seq As Long, _

subject As Object, _

etc As Variant )

3. In the visEventProc procedure, write code to handle the notifica-
tions received from Visio in whatever way makes sense for your
program.

For example, the following visEventProc procedure uses a Select Case
block to check for three events: DocumentSaved, PageAdded, and
ShapeDeleted. Other events fall under the default case (Case Else).
Each Case block constructs a string (strDumpMsg) that contains the
name and event code of the event that fired. Finally, the procedure
displays the string in a message box.

Designing event handlers

This visEventProc example handles multiple
events in a single procedure, and uses
Select Case to branch according to the
event. However, Visio does not require this.
Depending on the number and category of
events your program will handle, you may
prefer to define a different sink object for
each event, or use other techniques to
branch within the procedure.



H A N D L I N G   E V E N T S   I N   V I S I O 329

visEventProc in \DVS\VB SOLUTIONS\VB EVENT SAMPLE.CLS

' visEventProc - Handles Visio events

'

' Parameters:

' eventCode The event code of the event that fired.

' sourceObj A reference to the source object whose EventList contains the Event object.

' eventID The unique ID of the Event object in its EventList collection.

' seqNum The sequence of this event among events fired in the instance of Visio.

' subjectObj A reference to the object that is subject of the event.

' moreInfo A string that contains additional information, defined when the

' Event object was created.

'

Public Sub VisEventProc(eventCode As Integer, sourceObj As Object, eventID As Long, _

seqNum As Long, subjectObj As Object, moreInfo As Variant)

Dim strDumpMsg As String

' Find out which event fired.

Select Case eventCode

Case visEvtCodeDocSave

strDumpMsg = "Save(" & eventCode & ")"

Case (visEvtPage + visEvtAdd)

strDumpMsg = "Page Added(" & eventCode & ")"

Case visEvtCodeShapeDelete

strDumpMsg = "Shape Deleted(" & eventCode & ")"

Case Else

strDumpMsg = "Other(" & eventCode & ")"

End Select

' Display the event name and code

frmEventDisplay.EventText.Text = strDumpMsg

End Sub

Creating the Event object. When your program runs, it should create
Event objects when they are needed.

To create an Event object that sends a notification:

1. Create an instance of your sink object.

You can use the same instance of the sink object for multiple
Event objects, or you can use more than one instance of the sink
object if you wish.



3 3 0 C  H  A  P  T  E  R    1  5

2. Get a reference to the EventList collection of the source object in
Visio.

3. Use the AddAdvise method and provide the event code and a
reference to the sink object.

AddAdvise has two additional arguments. The third argument is
reserved for future use and should be null (""). The fourth
argument can be a string of arguments for the event handler.
Visio assigns these to the Event object’s TargetArgs property.
When your program receives the notification, it can get this
property to obtain the arguments.

For example, the following code creates an instance of the sink object
CEventSamp and creates Event objects to send notifications of the fol-
lowing events: DocumentSaved, PageAdded, and ShapeDeleted.

FormLoad in \DVS\VB SOLUTIONS\VB EVENT SAMPLE.FRM

' Create an instance of the sink object class CEventSamp, declared in Event Sample.CLS

Dim g_Sink As CEventSamp

Dim docObj As Visio.Document

Private Sub Form_Load()

Dim eventsObj As Visio.EventList

...

' Create an instance of the CEventSamp class

' g_Sink is global to the form.

Set g_Sink = New CEventSamp

' Create a new drawing

' An instance of Visio has already been assigned to g_appVisio

Set docObj = g_appVisio.Documents.Add("")

' Get the EventList collection of this document.

Set eventsObj = docObj.EventList

' Add Event objects that will send notifications.

' Add an Event object for the DocumentSaved event.

eventsObj.AddAdvise visEvtCodeDocSave, g_Sink, "", "Document Saved..."

' Add an Event object for the ShapeDeleted event.

eventsObj.AddAdvise visEvtCodeShapeDelete, g_Sink, "", "Shape Deleted..."

' Add an Event object for the PageAdded event.

eventsObj.AddAdvise (visEvtPage + visEvtAdd), g_Sink, "", "Page Added..."

End Sub



H A N D L I N G   E V E N T S   I N   V I S I O 331

What happens when the Event object fires.  When an Event object that
sends a notification fires, Visio calls the visEventProc procedure of
the corresponding sink object, passing the following arguments:

• The event code of the event that caused the Event object to fire.

• A reference to the source object whose EventList contains the
Event object that fired.

• The unique identifier of the Event object within its EventList
collection. Unlike the Index property, the identifier does not
change as objects are added and removed from the collection. You
can access the Event object from within the visEventProc
procedure by using source.EventList.ItemFromID(id).

• The sequence of the event relative to events that have fired so far
in the instance of Visio.

• A reference to the subject of the event, which is the object to
which the event occurred.

• Additional information, if any, that accompanies the notification.
For most events, this argument will be Nothing.

To continue the earlier example, when an event such as PageAdded
fires, Visio calls visEventProc on the sink object g_sink, which dis-
plays the event name and its event code.

Releasing Event objects.  Event objects created with AddAdvise per-
sist until

• The Event object is deleted with the Delete method.

• All references to the source object are released, including refer-
ences that are held indirectly through a reference to the source
object’s EventList collection or to an Event object in the collection.

• The instance of Visio is closed.
Cleaning up before Visio closes

Visio fires a BeforeQuit event before releas-
ing references to sink objects. If your
program needs to perform cleanup tasks
before Visio is closed, handle the
BeforeQuit event.

If you implement your sink object in a class
module in the VBA project of a document,
the project will be closed before BeforeQuit
is fired. In this case, handle the
BeforeDocClose event to perform cleanup
tasks before Visio is closed.



3 3 2 C  H  A  P  T  E  R    1  5

Getting information about events
You can get information about an existing Event object by getting
properties such as the following:

Event.  The event code of the event or events that causes the Event ob-
ject to fire. Event codes are prefixed with visEvt in the Visio type
library, and are listed in event topics in the online Visio Automation
Reference.

Action.  The action that is triggered when the Event object fires. In the
Visio version 5.0 product line, the value of the Action property can be
visActCodeRunAddon or visActCodeAdvise.

Target.  For an Event object that runs an add-on, the name of the
add-on to run. For an Event object that sends a notification, the Tar-
get property is not available, and attempting to get or set the property
will cause an exception.

TargetArgs. Contains the argument string passed with Add or
AddAdvise when the Event object was created.

In addition, the EventInfo property of the Application object pro-
vides more information about certain events after they occur. For
example, if an Event object fires after shapes are deleted, you can get
the names of the deleted shapes from the EventInfo property.

Because there’s only one EventInfo property for potentially many
events, you must specify the event you’re interested in when you get
EventInfo. To do this, pass the event’s sequence number (which Visio
passes as the third argument when it calls visEventProc on the corre-
sponding sink object), or pass visEvtIDMostRecent for the most
recent event. If there’s no additional information for the event you
specify, EventInfo returns Nothing.

For details about the information passed by a particular event, see
that event in the online Visio Automation Reference.

Controlling Event objects

You can control the behavior of an existing
Event object from a program in these ways:

• To prevent an Event object from firing
temporarily, set its Enabled property to
FALSE.

• To fire an Event object explicitly without
waiting for the event to occur, use its
Trigger method and specify a context
string to send to the target of the action.

• To suspend event processing in an in-
stance of Visio, set the Application
object’s EventsEnabled property to FALSE.
No events will fire in that instance until
EventsEnabled is set to TRUE.



Topics in this chapter

What you can customize ............................................................................. 334

Planning user interface changes ................................................................. 339

Making user interface changes .................................................................. 343

Applying a custom user interface ............................................................... 355

Restoring the built-in Visio user interface .................................................. 357

16
Customizing the
Visio user interface

If you’re writing a program for others to use, you can customize the
Visio user interface (UI) to make running your program easier or to
simplify Visio for your users. For example, you can add a toolbar but-
ton or menu item to the user interface that runs your program. You
can also remove items or create your own custom user interface file
that contains only menu and toolbar items specific to your business
needs.

This chapter discusses the objects in the Visio UI object model, dem-
onstrates how to add and remove items from a user interface, how to
create a custom user interface file, and how to restore the built-in Visio
user interface.



3 3 4 C  H  A  P  T  E  R    1  6

What you can customize

You can help your users work more quickly and easily by letting them
launch your programs directly from a custom user interface. You can
customize Visio menus and menu items; toolbars and toolbar items;
status bars and status bar items; and accelerators from programs writ-
ten in Visual Basic for Applications (VBA), Visual Basic, C/C++, or
other languages that support Automation. For example, you can add
your own menu or toolbar items to Visio, or temporarily remove
items from the Visio user interface.

You customize the Visio user interface (UI) by working with UI ob-
jects. Just as you get Document objects to work with various open
documents in an instance of Visio, you get UI objects to work with
the menus, toolbars, status bars, or accelerators of the Visio UI.

The following illustration shows the UI objects in the Visio object
model.

Document

Application

Toolbars

Toolbar

StatusBarItems

StatusBarItem

ToolbarItems

ToolbarItem

ToolbarSets

ToolbarSet

StatusBars

StatusBar

MenuItems

MenuItem�

MenuItems

MenuItem

Menus

Menu

MenuSets

MenuSet

AccelItems

AccelItem

AccelTables

AccelTable

UI object

BuiltInMenus

CustomMenus

UI object

BuiltInToolbars

CustomToolbars

UI objects in the Visio object model

Many objects in the Visio UI object model correspond to items you
see in Visio. For example, a Menu object can represent the Visio Edit
menu, and a MenuItem object can represent the Visio Copy com-
mand located on the Edit menu, a custom menu command for a
macro or add-on, or an anchor for a hierarchical menu.

Collection

Object

Key



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 335

Four properties each return UI objects

Document

Application
UI object

BuiltInMenus

CustomMenus

UI object

BuiltInToolbars

CustomToolbars

Many Visio UI objects correspond to items you can see in Visio.

Getting a UI object. UI objects differ from other objects in the Visio
object model. The properties BuiltInMenus, CustomMenus,
BuiltInToolbars, and CustomToolbars each return a UI object—
there is no UI Object property. You access menus or accelerators by
getting the BuiltInMenus or CustomMenus property, and access
toolbars or status bars by getting the BuiltInToolbars or
CustomToolbars property.

To modify a copy of the built-in Visio user interface, use the
BuiltInMenus or BuiltInToolbars property of the Application object
to obtain a UI object. To modify a custom user interface, use the
CustomMenus or CustomToolbars property of an Application or
Document object to obtain a UI object. For example, to modify a
copy of the built-in Visio menus and obtain a UI object that repre-
sents Visio menus and accelerators, start with this code:

Dim uiObj as Visio.UIObject

Set uiObj = Visio.Application.BuiltInMenus

Menu
Toolbar

Toolbar button

Status bar
Status bar item



3 3 6 C  H  A  P  T  E  R    1  6

Getting menu objects. Visio displays different sets of menus in differ-
ent window contexts, such as a drawing window, ShapeSheet window,
or stencil window. For example, Visio displays different menu items
when the drawing window is active than it does when the stencil win-
dow is active.

Menus

Menu

MenuSets

MenuSet

MenuItems

MenuItem

MenuItems

MenuItem�

Menu objects in the Visio UI object model

Here is a list of Menu objects in the Visio UI object model:

••••• MenuSets. The collection of all possible Visio menu sets. To get a
MenuSets collection, get the MenuSets property of a UI object.

••••• MenuSet. The set of menus available in a given window context.
For example, a MenuSet object could represent the set of menus
available when the drawing window is active. To get a MenuSet
object, use the ItemAtID property of a MenuSets collection and
specify the ID of the context you want.

••••• Menus. A collection of Visio menus in a menu set. To get a Menus
collection, get the Menus property of a MenuSet object.

••••• Menu. A Visio menu. To get a Menu object, use the Item property
of a Menus collection with the index of the menu you want.
Menus are indexed in the order they appear from left to right in
Visio. For example, in most window contexts, the File menu has
an index of 0. To add a Menu object, use the Add or AddAt
method of a Menus collection.

••••• MenuItems. A collection of menu items in a Visio menu. To get a
MenuItems collection, get the MenuItems property of a Menu
object or MenuItem object if it represents a hierarchical menu.

••••• MenuItem. A menu item, or command, on a Visio menu. To get a
MenuItem object, use the Item property of the MenuItems
collection with the index of the menu item you want. Menu items
are indexed in the order they appear from top to bottom on the
menu. For example, the Undo command on the Visio Edit menu
has an index of 0. To add a MenuItem object, use the Add or
AddAt method of the MenuItems collection.

Shortcut and hierarchical menus

A shortcut menu, sometimes called a right-
click menu or context-sensitive menu, is the
menu that appears when you right-click
something such as a shape, page, or stencil
window. All MenuSet objects correspond
to a given window context except for a
MenuSet object that represents a shortcut
menu.

A hierarchical menu, or cascading menu,
is a submenu of another menu item. For
example, the Visio Macro menu item has a
hierarchical menu with menu items such as
Macros and Visual Basic Editor. If a Visio
menu item has a hierarchical menu, then
the MenuItem object that represents the
hierarchical menu has a MenuItems collec-
tion with MenuItem objects. The CmdNumCmdNumCmdNumCmdNumCmdNum
property of the MenuItem object represent-
ing a hierarchical menu should be set to
visCmdHierarchicalvisCmdHierarchicalvisCmdHierarchicalvisCmdHierarchicalvisCmdHierarchical, and the remaining
properties and methods that should be used
are: CaptionCaptionCaptionCaptionCaption, IndexIndexIndexIndexIndex, MenuItemsMenuItemsMenuItemsMenuItemsMenuItems, ParentParentParentParentParent,
and DeleteDeleteDeleteDeleteDelete. All other properties and meth-
ods will be ignored.



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 337

Getting accelerator objects. An accelerator is a combination of keys
that, when pressed, execute a command. For example, the accelerator
for the Copy menu item is Ctrl+C, and the accelerator for the Paste
menu item is Ctrl+V.

AccelItems

AccelItem

AccelTables

AccelTable

Accelerator objects in the Visio UI object model

••••• AccelTables. The collection of all Visio accelerator tables. Visio
uses different accelerators in different window contexts. To get an
AccelTables collection, get the AccelTables property of a UI
object.

••••• AccelTable. The table of accelerators available for a given window
context. AccelTable objects exist only for window contexts, such
as the drawing window, not for shortcut menus. To get an
AccelTable object, use the ItemAtID property of an AccelTables
collection and specify the ID of the context you want.

••••• AccelItems. A collection of accelerators in an accelerator table. To
get an AccelItems collection, get the AccelItems property of an
AccelTable object.

••••• AccelItem. A single accelerator item. Accelerator items such as
Ctrl+C (Copy) and Ctrl+V (Paste) are available when a drawing
window is active. To get an AccelItem object, use the Item
property of an AccelItems collection with the index of the menu
you want.

Getting toolbar objects. Visio displays different sets of toolbars in dif-
ferent window contexts. For example, when the ShapeSheet window
is active, Visio displays different toolbar buttons than it does when
the drawing window is active.

Toolbars

Toolbar

ToolbarSets

ToolbarSet

ToolbarItems

ToolbarItem

Toolbar objects in the Visio UI object model

••••• ToolbarSets. The collection of all possible Visio toolbar sets.
To get a ToolbarSets collection, get the ToolbarSets property of a
UI object.

UI object collections

The following collections are indexed start-
ing with 0 rather than 1:

• AccelTables • StatusBars
• AccelItems • StatusBarItems
• MenuSets • ToolbarSets
• Menus • Toolbars
• MenuItems • ToolbarItems



3 3 8 C  H  A  P  T  E  R    1  6

••••• ToolbarSet. The set of toolbars available in a given window
context. For example, a ToolbarSet object could represent the set
of toolbars available when the ShapeSheet window is active. To
get a ToolbarSet object, use the ItemAtID property of a
ToolbarSets collection and specify the ID of the context you want.

••••• Toolbars. A collection of Visio toolbars in a toolbar set. To get a
Toolbars collection, get the Toolbars property of a ToolbarSet
object.

••••• Toolbar. A Visio toolbar. To get a Toolbar object, use the Item
property of a Toolbars collection with the index of the toolbar
you want. Toolbars are indexed in the order they appear from top
to bottom in Visio. To add a toolbar, use the Add or AddAt
method of a Toolbars collection.

••••• ToolbarItems. A collection of toolbar items in a Visio toolbar. To
get a ToolbarItems collection, get the ToolbarItems property of a
Toolbar object.

••••• ToolbarItem. A toolbar button on a Visio toolbar. To get a
ToolbarItem object, use the Item property of the ToolbarItems
collection with the index of the toolbar item you want. Toolbar
items are indexed in the order they appear from left to right on
the toolbar. For most contexts the Blank Drawing toolbar item
has an index of 0. To add a toolbar item, use the Add or AddAt
method of a ToolbarItems collection.

Getting status bar objects. A status bar displays status bar items that
give users information about the status of a shape, menu, or tool,
such as the location of a drawing tool on the page or the angle and
length of a line.

StatusBarItems

StatusBarItem

StatusBars

StatusBar

Status bar objects in the Visio UI object model

••••• StatusBars. The collection of all possible Visio status bars.
To get a StatusBars collection, use the StatusBars property of a
UI object.

••••• StatusBar. The status bar in a given window context. For example,
a StatusBar object could represent the status bar displayed when a
shape is selected. To get a StatusBar object, use the ItemAtID
property of a StatusBars collection and specify the ID of the
context you want.

Toolbar Caption property

Visio 5.0 now uses the CaptionCaptionCaptionCaptionCaption property of
the Toolbar object. The caption will appear
on the hierarchical menu for the Toolbars
menu item, available from the View menu in
the drawing window.

Visio BuiltInToolbars

The BuiltInToolbarsBuiltInToolbarsBuiltInToolbarsBuiltInToolbarsBuiltInToolbars property in Visio 5.0 has
been changed to use the Microsoft Office
toolbar set by default. The Lotus toolbar set is
no longer supported. The visToolbarLotusSSvisToolbarLotusSSvisToolbarLotusSSvisToolbarLotusSSvisToolbarLotusSS
argument is ignored.

The ShowToolbarShowToolbarShowToolbarShowToolbarShowToolbar property has been added
to control whether Visio shows its toolbar.



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 339

••••• StatusBarItems. A collection of status bar items on a Visio status
bar. To get a StatusBarItems collection, get the StatusBarItems
property of a StatusBar object.

••••• StatusBarItem. A Visio status bar item on a status bar. To get a
StatusBarItem object, use the Item property of the StatusBarItems
collection with the index of the status bar item you want. Status
bar items are indexed in the order they appear from left to right
on a status bar. For example, when a 2-D shape is selected the
status bar item for its width appears on the left and has an index
of 0.

Planning user interface changes

As you begin designing your custom user interface, you need to an-
swer the following questions:

• Will you be customizing a copy of the built-in Visio user interface
or an existing custom user interface?

• Should the custom user interface be available on a document or
application level? (What is its scope ?)

• Should the custom user interface be available only when a
document is active, throughout a single Visio session, or each
time Visio runs? (How long does it persist ?)

The scope of a user interface defines the context in which your cus-
tom user interface is available. Persistence is the length of time in
which your user interface is available.

Customizing a copy of the built-in
Visio UI versus an existing custom UI
Before you retrieve a user interface, first determine whether it is the
built-in Visio user interface or a custom user interface.

When you retrieve the built-in Visio menus or toolbars, you are actu-
ally retrieving a copy, or snapshot, of the built-in Visio user interface
that you can manipulate. The original built-in Visio user interface
remains untouched so you can restore it later. When you retrieve a
custom user interface, you are retrieving the currently active custom
user interface, not a copy.



3 4 0 C  H  A  P  T  E  R    1  6

To determine which UI is in use, check the CustomMenus and
CustomToolbars properties of all the Document objects in the
Documents collection. Then check the same properties of the Appli-
cation object. If an object is not using a custom UI, both properties
return Nothing and you can simply retrieve a copy of the built-in
Visio UI.

If a custom UI is in use, you can decide whether you want to replace
the custom UI with your own or just add your custom UI items to it.

The following example demonstrates how to retrieve the currently
active UI for your document without replacing the application-level
custom UI. You then need to write additional code to add your cus-
tom UI items.

'Check if there are document custom menus

If ThisDocument.Custommenus Is Nothing Then

'Check if there are Visio custom menus

If Visio.Application.CustomMenus Is Nothing Then

'Use the Built-in menus

Set visUIObj = Visio.Application.BuiltInMenus

Else

'Use the Visio custom menus

Set visUIObj = Visio.Application.CustomMenus

'Save to a file

strPath = Visio.Application.Path & _

"\custUI.vsu"

visUIObj.SaveToFile (strPath)

'Set the existing custom UI for the document

ThisDocument.CustomMenusFile = strPath

'Grab this document's UI object

Set visUIObj = ThisDocument.CustomMenus

'Delete the newly created temp file

Kill Visio.Application.Path & "\custUI.vsu"

ThisDocument.ClearCustomMenus

End If

Else

'Use the file custom menus

Set visUIObj = ThisDocument.CustomMenus

End If

For further details about how to use the CustomMenus and
CustomToolbars properties, see the online Visio Automation Reference.



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 341

Controlling the scope of your UI
Just as you can get a UI object from the Document or Application ob-
ject, you can also apply your custom user interface changes to the
Document or Application object by using its SetCustomMenus or
SetCustomToolbars method. The scope you want determines which
object you should apply your changes to.

You can choose to make your custom user interface available on an
application or document level. To use a custom user interface for
Visio on the application level, that is, regardless of which document is
open, apply your custom user interface to the Application object.

To use a custom user interface on a document level, that is, while a
document is active, apply your custom user interface to a Document
object. This is the way you’ll typically work when programming in
VBA. This example shows how to set custom menus for the
ThisDocument object:

Dim uiObj as Visio.UIObject

'Get a copy of the built-in Visio menus

Set uiObj = Visio.Application.BuiltInMenus

... 'Make custom UI changes

'Set custom menus for ThisDocument

ThisDocument.SetCustomMenus uiObj

Controlling the persistence of your UI
The approach you use to customize the Visio user interface depends
on the extent of the changes you intend to make and the development
environment in which you are programming. Depending on the
scope of your user interface changes, you may want your changes to
persist while a document is active, throughout a single Visio session,
or each time Visio runs.

While a document is active. A document can have a custom user inter-
face that takes precedence over the Visio application’s user interface
(custom or built-in) while the document is active. For example, when
a user creates a document from a particular template, you can add a
toolbar button that runs a wizard to help the user create a drawing. As
soon as the user closes the document, Visio reverts to the built-in user
interface, as long as a custom user interface is not set for the applica-
tion or the next active document.



3 4 2 C  H  A  P  T  E  R    1  6

When you are customizing the Visio user interface from VBA, you
usually work on a document level, so set the custom user interface for
the ThisDocument object or load a custom user interface (.VSU) file
when the DocumentOpened event occurs to make a custom user in-
terface persist while a document is active. For details about triggering
events, see Chapter 15, “Handling events in Visio.”

During a single Visio session. If you want your custom user interface
to persist during a single Visio session, set the custom user interface
for the Application object from a VBA macro or standalone program.

Each time Visio runs. If you want your user interface changes to re-
place the Visio user interface on a more permanent basis, you can set
the custom user interface for the Application object each time Visio
runs or create a custom user interface file. A custom user interface file
contains your custom user interface data—a snapshot of your custom
user interface. To make extensive changes to the Visio user interface,
you can code your custom user interface changes in an external de-
velopment environment and save a custom user interface file.

After you create a custom user interface file, you must tell Visio the
file name by setting the CustomMenusFile or CustomToolbarsFile
properties for the Application object. For details, see “Applying a cus-
tom user interface” later in this chapter.

Your custom user interface file loads each time Visio runs until you
specify a different file or restore the built-in Visio user interface. For
details about creating a custom user interface file, see “Applying a cus-
tom user interface” later in this chapter.



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 343

Making user interface changes

After you decide which UI object you want to work with and the
scope and persistence of your custom user interface, you can begin to
make the changes themselves. To get to the item that you want to re-
move or to get the location where you want to add an item, you must
navigate the Visio object model. To do this, first get a UI object; then
a menu, accelerator, toolbar, or status bar; and then the specific items
that you want to change.

NOTE  After you make your user interface changes, you must set the
customized UI object so your user interface takes effect. For details
about setting a UI object, see “Putting custom UI changes into effect”
later in this chapter.

Getting a UI object
To access UI objects in an instance of Visio, get one of the following
properties:

••••• BuiltInMenus. Get this property for a copy of the built-in Visio
menus and accelerators; this is a property of the Application object.

••••• BuiltInToolbars. Get this property for a copy of the built-in Visio
toolbars and status bars; this is a property of the Application
object. The Visio 5.0 UI uses the Microsoft Office toolbar set.

••••• CustomMenus. Get this property for the custom menus and
accelerators currently in effect for that instance or that docu-
ment; this is a property of the Application or Document object.

••••• CustomToolbars. Get this property for the custom toolbars and
status bars currently in effect for that instance or that document;
this is a property of the Application or Document object.

For example, to get a UI object that represents a copy of the built-in
Visio menus:

Dim uiObj As Visio.UIObject

Set uiObj = Visio.Application.BuiltInMenus

To get a UI object that represents a copy of the built-in Visio toolbars:

Dim uiObj as Visio.UIObject

Set uiObj = Visio.Application.BuiltInToolbars(0)



3 4 4 C  H  A  P  T  E  R    1  6

The Visio UI uses the Microsoft Office toolbar set by default.

To get a UI object that represents the custom menus for the
ThisDocument object, assuming custom menus are set for the
ThisDocument object:

Dim uiObj As Visio.UIObject

Set uiObj = ThisDocument.CustomMenus

Getting a MenuSet, ToolbarSet,
AccelTable, or StatusBar object
To get a MenuSet, ToolbarSet, AccelTable, or StatusBar object, use the
ItemAtID method of the appropriate collection and specify the ID of
the object you want. The object’s ID identifies its context.

This example gets a MenuSet object that represents the drawing win-
dow menus:

Dim uiObj As Visio.UIObject

Dim menuSetObj As Visio.MenuSet

'Get a UI object that represents a copy of the

'built-in Visio menus

Set uiObj = Visio.Application.BuiltInMenus

'Get the drawing window menu set

Set menuSetObj = _

uiObj.MenuSets.ItemAtId(visUIObjSetDrawing)

This example gets a ToolbarSet object that represents the ShapeSheet
window toolbars:

Dim uiObj As Visio.UIObject

Dim toolbarSetObj As Visio.ToolbarSet

'Get a UI object that represents a copy of the

'built-in Visio toolbars

Set uiObj = Visio.Application.BuiltInToolbars(0)

'Get the ShapeSheet window toolbar set

Set toolbarSetObj = _

uiObj.ToolbarSets.ItemAtID(visUIObjSetShapeSheet)



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 345

Constants for the window contexts you can specify with ItemAtID
are listed in the following table and defined in the Visio type library.
The first seven window contexts are the most commonly used. Not all
window contexts are currently in use by Visio, and not all exist in
each set; the table lists the window contexts that are available for spe-
cific object sets.

Visio contexts for MenuSet, ToolbarSet, AccelTable, and StatusBar objects

ID Constant Context Availability

visUIObjSetNoDocument Visio window, no documents open ● ▲ ◆ ■

visUIObjSetDrawing Drawing window ● ▲ ◆ ■

visUIObjSetStencil Stencil window ● ▲ ◆ ■

visUIObjSetShapeSheet ShapeSheet window ● ▲ ◆ ■

visUIObjSetIcon Icon editing window ● ▲ ◆ ■

visUIObjSetInPlace In-place editing window ● ■

visUIObjSetPrintPreview Print Preview window ● ▲ ◆ ■

visUIObjSetText Text editing window x

visUIObjSetCntx_DrawObjSel Shortcut menu, selected shape ●

visUIObjSetCntx_DrawOleObjSel Shortcut menu, selected linked or embedded object ●

visUIObjSetCntx_DrawNoObjSel Shortcut menu, drawing page (nothing selected) x

visUIObjSetCntx_InPlaceNoObj Shortcut menu, in-place editing window (nothing selected) x

visUIObjSetCntx_TextEdit Shortcut menu, text editing window ●

visUIObjSetCntx_StencilRO Shortcut menu, read-only stencil ●

visUIObjSetCntx_ShapeSheet Shortcut menu, ShapeSheet window ●

visUIObjSetCntx_Toolbar Shortcut menu, toolbar ●

visUIObjSetCntx_FullScreen Shortcut menu, full screen view ●

visUIObjSetBinderInPlace Shortcut menu, Microsoft Office Binder ● ■

visUIObjSetCntx_StencilRW Shortcut menu, stencil opened as an original ●

visUIObjSetCntx_StencilDocked Shortcut menu, docked stencil ●

visUIObjSetHostingInPlace In-place editing window ● ■

visUIObjSetCntx_Hyperlink Shortcut menu, hyperlink ●

visUIObjSetPal_LineColors Drawing window ▲

(Table continued on next page)



3 4 6 C  H  A  P  T  E  R    1  6

Visio contexts for MenuSet, ToolbarSet, AccelTable, and StatusBar objects (continued)

ID Constant Context Availability

visUIObjSetPal_LineWeights Drawing window ▲

visUIObjSetPal_LinePatterns Drawing window ▲

visUIObjSetPal_FillColors Drawing window ▲

visUIObjSetPal_FillPatterns Drawing window ▲

visUIObjSetPal_TextColors Drawing window ▲

visUIObjSetPal_AlignShapes Drawing window ▲

visUIObjSetPal_DistributeShapes Drawing window ▲

visUIObjSetPal_Shadow Drawing window ▲

visUIObjSetPal_LineEnds Drawing window ▲

visUIObjSetPal_CornerRounding Drawing window ▲

Key:
● MenuSets object
▲ ToolbarSets object
◆ StatusBars object
■ AccelTables object
x Reserved for future use

Adding a menu and menu item
After getting a UI object, you can add or remove items from the user
interface. To add items, navigate the UI objects to get the collection
that contains the kind of item you want to add and use that
collection’s Add or AddAt method.

The following example adds a new menu and menu item available
when the Visio drawing window is active.

Dim uiObj As Visio.UIObject

Dim menuSetsObj As Visio.MenuSets

Dim menuSetObj As Visio.MenuSet

Dim menusObj as Visio.Menus

Dim menuObj As Visio.Menu

Dim menuItemsObj as Visio.MenuItems

Dim menuItemObj As Visio.MenuItem

'Get a UI object that represents a copy of the

'built-in Visio menus

Set uiObj = Visio.Application.BuiltInMenus

Adding a shortcut menu item

For an example of a program that adds a
menu item to a shortcut menu, see the
AddShortcutMenuItem macro in the
DVS module in \DVS\VBA SOLUTIONS\VBA
SAMPLES.VST on your Visio 5.0 CD.



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 347

'Get the MenuSets collection

Set menuSetsObj = uiObj.MenuSets

'Get drawing window MenuSet object; Get the context

Set menuSetObj= _

menuSetsObj.ItemAtId(visUIObjSetDrawing)

'Get the Menus collection

Set menusObj = menuSetObj.Menus

'Add a Demo menu before the Window menu

'A menu without a menu item will not appear.

Set menuObj = menusObj.AddAt(7)

menuObj.Caption = "Demo"

The first half of this example assumes the Window menu is still in its
initial position—seventh from the left on the menu bar. Adding or re-
moving menus can change the position of other menus, however.

The second half of the example, shown below, adds a menu item to
the Demo menu and sets the menu item’s properties. For details, see
“Setting properties of an item” later in this chapter.

The following sample code uses the Add method to add one item to
the Demo menu that was added in the preceding sample code. When
you add an item using the Add method, the item is added to the end
of a collection. This example adds only one menu item, so its position
is not an issue. However, if you were to add another item using the
Add method, it would appear at the bottom of the menu. To control
where a menu item appears, use the AddAt method and specify the
ordinal position of the item.

'Get the MenuItems collection

Set menuItemsObj = menuObj.MenuItems

'Add a MenuItem object to the new Demo menu

Set menuItemObj = menuItemsObj.Add

'Set the properties for the new menu item

menuItemObj.Caption = "Run &Demo Program"

menuItemObj.AddOnName = "Demo.EXE"

menuItemObj.AddOnArgs = "/DVS=Fun"

menuItemObj.MiniHelp = "Run the Demo program"

'Tell Visio to use the new UI object (custom menus)

'while the document is active

ThisDocument.SetCustomMenus uiObj



3 4 8 C  H  A  P  T  E  R    1  6

The last statement, ThisDocument.SetCustomMenus uiObj, tells Visio
to use the custom menus while the document is active. The custom
UI changes don’t persist after the user closes the document.

Adding a toolbar button
This example demonstrates how to add a toolbar button to a copy of
the built-in Microsoft Office toolbar for the drawing window context.

To run this VBA program, open the VBA Samples Template (VBA

SAMPLES.VST), choose Macro from the Tools menu, then DVS, and
then AddToolbarButton. The code for this example is in \DVS\VBA

SOLUTIONS\VBA SAMPLES.VST.

AddToolbarButton macro in \DVS\VBA SOLUTIONS\VBA SAMPLES.VST\DVS MODULE

Sub AddToolbarButton ()

'Object variables to be used in the program.

Dim uiObj As Visio.UIObject

Dim toolbarSetObj As Visio.ToolbarSet

Dim toolbarItemsObj As Visio.ToolbarItems

Dim objNewToolbarItem As Visio.ToolbarItem

'Get the UI object for the Microsoft Office toolbars

Set uiObj = Visio.Application.BuiltInToolbars(0)

'Get the Drawing Window ToolbarSet object

Set toolbarSetObj = uiObj.ToolbarSets.ItemAtID(visUIObjSetDrawing)

'Get the ToolbarItems collection

Set toolbarItemsObj = toolbarSetObj.Toolbars(0).ToolbarItems

'Add a new button in the first position

Set objNewToolbarItem = toolbarItemsObj.AddAt(0)

'Set the properties for the new toolbar button

objNewToolbarItem.ActionText = "Run Stencil Report Wizard"

objNewToolbarItem.AddOnName = "Stndoc.exe"

objNewToolbarItem.CntrlType = visCtrlTypeBUTTON

objNewToolbarItem.Priority = 1

'Set the icon for the new toolbar button

objNewToolbarItem.IconFileName "dvs.ico"

'Tell Visio to use the new UI object (custom toolbars) while the document is active

ThisDocument.SetCustomToolbars uiObj

End Sub



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 349

Here are some notes on the code:

Set toolbarItemsObj = toolbarSetObj.Toolbars(0).ToolbarItems. Tool-
bars in Visio are ordered vertically. When specifying a location for a
Toolbar object, 0 represents the topmost toolbar. A Toolbars collec-
tion can include a maximum of four Toolbar objects.

Set objNewToolbarItem = toolbarItemsObj.AddAt(0). Toolbar items in
Visio are ordered horizontally, so this statement adds the ToolbarItem
or button at the leftmost location on the toolbar.

objNewToolbarItem.CntrlType = visCtrlTypeBUTTON sets the type of
toolbar button to display. The CntrlType property is also used for
status bar items. Visio includes other constants for the default Visio
toolbar buttons, but the only constant you can use for your custom
toolbar buttons is visCtrlTypeBUTTON.

objNewToolbarItem.Priority = 1 gives this toolbar item the highest
priority. Not all toolbar items appear at all resolutions—fewer items
appear on low-resolution monitors such as VGA. If a user has a low-
resolution monitor, low-priority toolbar items do not appear, but
high-priority items do. The higher the monitor resolution, the more
toolbar items appear.

objNewToolbarItem.IconFileName "dvs.ico" gets the DVS.ICO file that
contains the bitmap for the toolbar to display from a folder along the
Visio add-ons path specified on the File Paths tab. The icon file
should contain a 32-by-32-pixel icon and a 16-by-16-pixel icon. Visio
displays the 16-by-16-pixel icon in “small icon” mode and the 32-by-
32-pixel icon in “large icon” mode.

ThisDocument.SetCustomToolbars uiObj uses the custom toolbars
while the document is active.

Toolbar button priority

For an example of a program that changes
the priority of buttons on a toolbar, see the
ChangeToolbarButtonPriority macro in
the DVS module in \DVS\VBA SOLUTIONS\VBA
SAMPLES.VST on your Visio 5.0 CD.



3 5 0 C  H  A  P  T  E  R    1  6

Setting properties of an item
After you’ve added an item, you can set properties that define it. For
example, you can set the Caption property of a menu item to define
the text that appears on the menu or set the IconFileName method of
a toolbar item to specify and get the icon to display. You can also
change properties of an existing item.

The most significant property of a menu item or toolbar item is
AddOnName, which specifies the program or macro to run when the
user chooses the menu item or clicks the button. If the program takes
command line arguments, they can be specified with the AddOnArgs
property. For details about the properties and methods of a particular
item, search the online Visio Automation Reference for that item.

Caption specifies the text that appears on a menu or menu item. If
you want to display the accelerator with the menu item, include it as
part of the Caption property’s text and insert two spaces between the
“\a” and the accelerator text. For example:

"Open...\a Ctrl+O"

In this example, Open... is the menu item’s caption; Ctrl+O is the ac-
celerator text; and \a left justifies the accelerator text. Adding the
accelerator text to the Caption property doesn’t add an accelerator, it
simply displays it as part of the caption. You add accelerators by using
the accelerator objects in the Visio UI object model.

You can also specify other properties, such as those in the following
example:

menuItemObj.ActionText = "Run Demo 1"

menuItemObj.MiniHelp = "Run the Demo 1 application"

accelItemObj.Key = 8 'Backspace key

accelItemObj.Alt = True

ActionText specifies the text that appears on the Edit menu with
Undo, Redo, and Repeat for a menu item. It also appears in any error
messages or toolbar tooltips that might be displayed. MiniHelp speci-
fies the prompt that appears in the status bar when the user points to
the menu item.

Identifying a menu or toolbar item

Every built-in Visio menu item and toolbar
item represents a Visio command and has a
command ID. If you want to remove one of
these Visio items, you can identify it by its
command ID.

The CmdNum CmdNum CmdNum CmdNum CmdNum property of a custom menu
item or toolbar item that runs a program or
macro does not correspond to any Visio
command ID, so when you want to delete
the item, you cannot identify the item using
its command ID. Instead, use the CaptionCaptionCaptionCaptionCaption
property string of a custom menu or toolbar
item to locate the item.

IconFileName method

The IconFileNameIconFileNameIconFileNameIconFileNameIconFileName method extracts the
bitmap and stores it with your interface.
The icon file is no longer needed.

To see an example of a program that
changes the icon on a toolbar button, run
the ChangeToolbarButtonIcon macro in the
VBA Samples template located in the
\DVS\VBA SOLUTIONS folder on your Visio
5.0 CD.



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 351

Key specifies the ASCII key code value for an accelerator. For ex-
ample, the ASCII key code for the Backspace key is 8, and the ASCII
key code for the Esc key is 27. For details about ASCII key codes, see
the online documentation for the Microsoft Platform Software De-
velopment Kit (SDK). The Alt, Control, and Shift properties modify
the Key for an accelerator. To set the properties for an accelerator, set
any combination of modifiers to TRUE, specify one key code, and set
the item’s CmdNum property. To activate an accelerator command,
press the combination of modifiers and the key that corresponds to
the key code.

The CmdNum property specifies the command ID for an item. Every
built-in Visio menu item and toolbar item represents a Visio com-
mand and has a command ID. For example, the command ID for
Show ShapeSheet is visCmdWindowShowShapeSheet; the command
ID for Show Master Objects is visCmdWindowShowMasterObjects.
For a list of valid command IDs, see the Visio type library in the Ob-
ject Browser and search for “visCmd.”

Removing an item from a user interface
You can remove any item from the Visio user interface, whether the
item is part of the built-in Visio user interface or a custom item you
added. You can’t disable, or dim, a menu item or toolbar item.

Removing an item doesn’t remove the functionality of that item from
Visio, just the access to that functionality. Other avenues, such as ac-
celerators, may still be available. For example, if you remove the Copy
command from the Edit menu, but not the accelerator (Ctrl+C), a
user can still use the copy functionality by pressing Ctrl+C. You can
remove the Show ShapeSheet command from the Window menu, but
if the double-click behavior for a shape is to display the ShapeSheet
window, that window will still appear when that shape is double-
clicked.

Hiding the Visio user interface

If you want to completely hide the Visio
user interface, use the ShowToolbar,
ShowStatusBar, and ShowMenus properties
of the Application object.

Use ShowToolbar to hide all toolbars.
For example:

Visio.Application. _
ShowToolbar = False

Use ShowMenusShowMenusShowMenusShowMenusShowMenus to hide all menus. For
example:
Visio.Application. _
ShowMenus = False

Use ShowStatusBar to hide all status bars.
For example:

Visio.Application. _
ShowStatusBar = False

Deleting hierarchical menus

For an example that deletes the Visual
Basic Editor hierarchical menu item and
the corresponding accelerator, see the
DeleteHierarchicalMenuItem macro in the
DVS module in \DVS\VBA SOLUTIONS\VBA
SAMPLES.VST on your Visio 5.0 CD.



3 5 2 C  H  A  P  T  E  R    1  6

To remove an item, use the Delete method of that item. For example,
the following statements remove the Show ShapeSheet menu item
from the Window menu in the drawing window for the running in-
stance of Visio:

Dim uiObj as Visio.UIObject

Dim menuSetObj as Visio.MenuSet

Dim menuItemsObj as Visio.MenuItems

Dim i as Integer

Set uiObj = Visio.Application.BuiltInMenus

Set menuSetObj = _

uiObj.MenuSets.ItemAtID(visUIObjSetDrawing)

'Get the Window menu.

Set menuItemsObj = menuSetObj.Menus(7).MenuItems

'Get the Show ShapeSheet menu item by its CmdNum

'property.

'This technique works with localized versions

'of Visio.

For i = 0 to menuItemsObj.Count -1

If menuItemsObj(i).CmdNum= _

visCmdWindowShowShapeSheet Then

menuItemsObj(i).Delete

Exit For

End If

Next i

'Replace built-in Visio menus with customized set.

Visio.Application.SetCustomMenus uiObj

Removing a toolbar item
This example demonstrates how to delete the Spelling toolbar button
from the built-in Microsoft Office version of the Visio toolbar for the
drawing window context.

To run this VBA program, open the VBA Samples Template (VBA

SAMPLES.VST), choose Macro from the Tools menu, then DVS, and
then DeleteToolbarButton. The code for this example is in \DVS\VBA

SOLUTIONS\VBA SAMPLES.VST.



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 353

DeleteToolbarButton macro in \DVS\VBA SOLUTIONS\VBA SAMPLES.VST\DVS MODULE

Sub DeleteToolbarButton ()

Dim uiObj As Visio.UIObject

Dim toolbarSetObj As Visio.ToolbarSet

Dim toolbarItemsObj As Visio.ToolbarItems

Dim toolbarItemObj As Visio.ToolbarItem

Dim i As Integer 'Loop variable

'Get the UI object for the Microsoft Office toolbars

Set uiObj = Visio.Application.BuiltInToolbars(0)

'Get the drawing window ToolbarSet object

Set toolbarSetObj = uiObj.ToolbarSets.ItemAtID(visUIObjSetDrawing)

'Get the ToolbarItems collection

Set toolbarItemsObj = toolbarSetObj.Toolbars(0).ToolbarItems

'Get the Spelling ToolbarItem object

'Because this code gets the built-in Visio toolbars, you know you'll find the Spelling

'toolbar item. If code got a custom toolbar, it might not include the Spelling toolbar

'item.

For i = 0 To toolbarItemsObj.Count - 1

'Get the current ToolbarItem object from the collection

Set toolbarItemObj = toolbarItemsObj(i)

'Check whether the current toolbar item is the Spelling button by using its constant

If toolbarItemObj.CmdNum = visCmdToolsSpelling Then

Exit For

End If

Next i

'Delete the Spelling button

toolbarItemObj.Delete

'Tell Visio to use the new UI object (custom toolbars) while the document is active

ThisDocument.SetCustomToolbars uiObj

End Sub



3 5 4 C  H  A  P  T  E  R    1  6

Removing an accelerator
This example demonstrates how to delete the Visual Basic Editor ac-
celerator for the drawing window context.

To run this VBA program, open the VBA Samples Template (VBA

SAMPLES.VST), choose Macro from the Tools menu, then DVS, and
then DeleteAccelItem. The code for this example is in \DVS\VBA

SOLUTIONS\VBA SAMPLES.VST.

DeleteAccelItem macro in \DVS\VBA SOLUTIONS\VBA SAMPLES.VST\DVS MODULE

Sub DeleteAccelItem()

Dim uiObj As Visio.UIObject

Dim accelTableObj As Visio.AccelTable

Dim accelItemsObj As Visio.AccelItems

Dim accelItemObj As Visio.AccelItem

Dim i As Integer

'Retrieve the UIObject for the copy of the BuiltInMenus

Set uiObj = Visio.Application.BuiltInMenus

'Set accelTableObj to the Drawing menu set

Set accelTableObj = uiObj.AccelTables.ItemAtID(visUIObjSetDrawing)

'Retrieve the accelerator items collection

Set accelItemsObj = accelTableObj.AccelItems

'Retrieve the accelerator item for the Visual Basic Editor by iterating

'through the accelerator items collection and locating the item you want to delete.

For i = 0 To accelItemsObj.Count - 1

Set accelItemObj = accelItemsObj.Item(i)

If accelItemObj.CmdNum = Visio.visCmdToolsRunVBE Then

Exit For

End If

Next i

'Delete the accelerator

accelItemObj.Delete

'Tell Visio to use the new UI

ThisDocument.SetCustomMenus uiObj

End Sub



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 355

Applying a custom user interface

No matter how much code you write to customize the Visio user in-
terface, you must finish your code by setting the custom user
interface for an object so that your custom user interface changes will
take effect. After you code the custom user interface changes, set the
appropriate object or save your custom user interface to a file (.VSU).

Putting custom UI changes into effect
To put custom user interface changes into effect, use the
SetCustomMenus or SetCustomToolbars methods of the Document
or Application object. For example:

ThisDocument.SetCustomMenus uiObj

To set custom toolbars for a single Visio session, use this statement:

Visio.Application.SetCustomToolbars uiObj

If you change a UI object that represents the active custom toolbars
or custom menus while Visio is running, use the UpdateUI method
of the UI object to display your changes. For example:

'Get the UI object for the custom menus

Set uiObj = Visio.Application.CustomMenus

...'Code changes to the custom interface

'Update custom interface with changes

uiObj.UpdateUI

Creating, saving, and
loading a custom user interface file
If you’ve made extensive user interface changes and intend to save
your custom user interface to a (.VSU) file, use the SaveToFile
method of the UI object. For example:

uiObj.SaveToFile("c:\visio\solutions\office\mytools.vsu")

You can load a custom user interface file when you run Visio by set-
ting the custom user interface for the Application object. You can also
load a custom user interface file (.VSU) when an event occurs, such as
opening a document.

Modifying a custom user interface file

If you are programming in an external devel-
opment environment, such as Visual Basic,
you can load a custom user interface (.VSU)
file, make changes to it, and then save the
changes to the custom user interface file.

To load a custom user interface file, use the
LoadFromFile method. For example:

uiObj.LoadFromFile _
"shortcut.vsu"
...'Make user interface
'changes
uiObj.SaveToFile "c:\visio\ _
solutions\office\mytools.vsu"



3 5 6 C  H  A  P  T  E  R    1  6

To load a custom user interface file for an Application object, set the
following properties of the object to the name of the custom user in-
terface file:

••••• CustomMenusFile. Set this property for custom menus and
accelerators.

••••• CustomToolbarsFile. Set this property for custom toolbars and
status bars.

For example, to load a custom user interface file each time Visio runs,
use this statement:

Visio.Application.CustomToolbarsFile= _

"c:\visio\solutions\office\mytools.vsu"

You need to set these properties for the Application object only once.
These properties set the value of the CustomMenusFile and
CustomToolbarsFile entries in the VISIO.INI file and tell Visio the lo-
cation of the corresponding custom interface file. If a path name is
not specified, Visio looks in the folders along the Visio add-ons path,
specified in the File Paths tab. If Visio can’t find the specified file or if
the VISIO.INI file is deleted or modified, Visio reverts to the built-in
Visio user interface.

To load a custom user interface file when an event occurs, such as
opening a document, put the code in the appropriate event for the
Document object.

To load a custom user interface file each time a document is opened,
use this statement, in the DocumentOpened event for the Document
object:

ThisDocument.CustomMenusFile= _

"c:\visio\solutions\office\mytools.vsu"



C U S T O M I Z I N G   T H E   V I S I O   U S E R   I N T E R F A C E 357

Restoring the built-in Visio user interface

If your program customizes the Visio user interface, it’s a good idea to
restore the built-in Visio user interface when your program finishes
executing.

To restore the built-in Visio menus and accelerators, use the
ClearCustomMenus method of the Document (or Application) ob-
ject. To restore the built-in Visio toolbars and status bars, use the
ClearCustomToolbars method of the Document (or Application)
object. To clear the custom menus for a Document object, use this
statement:

ThisDocument.ClearCustomMenus

To clear custom toolbars for the Application object, use this statement:

Visio.Application.ClearCustomToolbars

The next time the document is opened or Visio is run, it uses the
built-in Visio user interface.





Topics in this chapter

Installing a Visio solution ............................................................................ 360

Controlling when a program runs ............................................................... 362

Distributing a program ................................................................................ 366

17
Running and
distributing a solution

If you’re writing a program for others to use, you need to decide
which templates, stencils, and drawings to distribute with your pro-
gram, within which Visio file you should store your Visual Basic for
Applications (VBA) program, and where to install the files. You also
need to decide how a user will run your program and what argu-
ments might be passed to your program when it is run. You may also
want to create a Setup program that installs an external standalone
program, its related stencils and templates, and online help in the ap-
propriate folders.

This chapter discusses where to install various files to take advantage
of the Visio default paths, some of the different ways a user can run
your program, and the things to consider when distributing your
program. For details about creating online help files and Setup pro-
grams, see the documentation for your development environment.
For details about associating online help with particular shapes, see
Chapter 9, “Packaging stencils and templates.”



3 6 0 C  H  A  P  T  E  R    1  7

Installing a Visio solution

If you’re providing your solution as a VBA program or single execut-
able (.EXE) file, you won’t need to create a Setup program to install it.
However, if your solution includes an .EXE file, stencils, templates, or
an online help file, a Setup program can help the user install your so-
lution easily and accurately.

This section describes where to install your solution’s files. For details
about creating a Setup program, see the documentation for your de-
velopment environment.

Where to install your files
Visio looks for files in the folders along a specified Visio path. For ex-
ample, macros and programs in folders along the Visio add-ons path
specified on the File Paths tab (choose Options from the Tools menu,
then click File Paths) appear in the Macros dialog box; template files
in folders along the Visio templates path appear in the Choose A
Drawing Template and Open dialog boxes; stencils in folders along
the Visio stencils path are listed on the Stencils menu and in the Open
Stencil dialog box. You can take advantage of this behavior by install-
ing your solution files in folders along the appropriate Visio paths.

Visio file paths and folders
When installing your solution, install your program and Visio files in
folders along the appropriate path as specified on the File Paths tab
(choose Options from the Tools menu, then click File Paths). For ex-
ample, install templates that contain VBA macros in the \SOLUTIONS

folder or any of its subfolders. By default, the \SOLUTIONS folder or
any of its subfolders is the specified path for templates, stencils, help
files, and add-ons.

You can also change and add folders to the file paths to include cus-
tom folders you create. To indicate more than one folder, separate
individual items in the path string with semicolons. For example, you
can change the add-ons path to “SOLUTIONS;LAYOUT;DATABASE.”

NOTE  If a path is not fully qualified, Visio looks for the folder in the
folder that contains the Visio program files. For example, if the Visio
executable file is installed in C:\VISIO, and the add-ons path is
“ADD-ONS;D:\ADD-ONS,” Visio looks for add-ons in both
C:\VISIO\ADD-ONS and D:\ADD-ONS and their corresponding
subfolders.



R U N N I N G   A N D   D I S T R I B U T I N G   A   S O L U T I O N 361

The following table lists the paths along which you should install
your program’s files.

Install this file Along this Visio path

Program (.EXE) add-ons path

Visio library (.VSL) add-ons path

Online help (.HLP) help path

for programs or shapes

Interface file (.VSU) add-ons path

for Visio or a document

Stencil (.VSS) stencil path

Template (.VST) template path

You can also find out what paths are in effect on the user’s system by
checking the following properties of an Application object:

• AddonPaths • StartupPaths

• DrawingPaths • StencilPaths

• FilterPaths • TemplatePaths

• HelpPaths

For example, to get the AddonPaths property:

Dim path as string

'Set path to the AddonPaths string

path = Visio.Application.AddonPaths



3 6 2 C  H  A  P  T  E  R    1  7

Controlling when a program runs

You can run a program in a number of ways depending on what type
of program you write and where you install external program files.

Your program can run automatically in the following ways:

••••• When Visio is started

••••• When a document is opened

••••• When the user chooses a command from the shortcut menu of a
shape

••••• When the user chooses a command from a menu or toolbar

••••• When a ShapeSheet formula is evaluated—typically run by a
formula in an Action or Event cell

Running a program when Visio is started. To run your program every
time Visio itself is started, install your program’s .EXE or .VSL file in
the Visio startup folder specified on the File Paths tab.

Running a VBA program when an action is taken on a document or

when an event occurs. To run a VBA program when a document is
opened, enter your code in the ThisDocument class module under
the appropriate event procedure. Here are a few common document
events used to run programs (grouped by type):

••••• BeforeDocumentClose
BeforeMasterDelete
BeforePageDelete
BeforeSelDelete (before a set of shapes is deleted)
BeforeStyleDelete

••••• DocumentChanged
DocumentCreated
DocumentOpened
DocumentSaved
DocumentSavedAs

For more information about the ThisDocument object, see Chapter
11, “Using Visio objects.” For more information about responding to
object events, see Chapter 15, “Handling events in Visio.”



R U N N I N G   A N D   D I S T R I B U T I N G   A   S O L U T I O N 363

Running any program from the Macro submenu or dialog box. To run
your program—.EXE or .VSL file, or VBA macro—from the Macros
dialog box, install an external program’s .EXE or .VSL file along the
add-ons path specified on the File Paths tab. All programs along this
path appear in the Macros dialog box and on the Macro submenu
along with any public VBA macros stored in a Visio file.

Macros dialog box

Binding a program to an Action or Events cell. You can run a program
when a shape event occurs, such as a double-click, or a shape is right-
clicked and a menu item is selected. To run any program from a
shape’s shortcut menu (the menu that appears when a shape or page
is right-clicked), enter a formula that uses the Visio RUNADDON func-
tion in the Action cell of a row in the shape’s Actions section, and
enter the text of the menu item in the Menu cell. For example:

Unless you specify a full pathname, Visio looks for your program
along the add-ons path specified on the File Paths tab.

You can also set an Action for a particular shape in the Action dialog
box (available when the ShapeSheet window is active) by clicking in
an Action cell and choosing Action from the Edit menu.



3 6 4 C  H  A  P  T  E  R    1  7

Action dialog box

To pass command-line arguments to your program, use the Visio
RUNADDONWARGS function—not used with VBA programs, only
add-ons. For example, to run an external program named
MYPROG.EXE:

= RUNADDONWARGS("myprog.exe", "arguments")

To run your program when a particular shape event occurs, put the
formula in the Events cell for the event you want to trigger your
program.

Events section in the ShapeSheet window

For example, to run a VBA macro when the user drops a particular
master in a drawing, put a formula such as the following in the
EventDrop cell in the Events section of the master:

= RUNADDON("Layout")

RUNADDON runs any program

Even though the ShapeSheet entry is
RUNADDON, this function runs add-ons or
macros—any program you specify in quota-
tion marks. For more information about
RUNADDON, search online help for
“RUNADDON.”



R U N N I N G   A N D   D I S T R I B U T I N G   A   S O L U T I O N 365

To run a VBA macro when a user double-clicks a particular shape,
put the same formula in the EventDblClick cell in the Events section
of the shape. Or set the double-click event for a particular shape in
the Double-Click dialog box by choosing Double-Click from the For-
mat menu.

Double-Click dialog box

TIP  You can exercise finer control over the events that run your pro-
grams by using the Visio DEPENDSON function in the formula of a
Scratch or User cell. For example, to run an external program when
the begin point of a 1-D shape is moved:

= RUNADDON("myprog.exe") + DEPENDSON(BeginX)

For details about these functions and the Events and Action cells, see
online help. For details about actions and events, see Chapter 4, “En-
hancing shape behavior.”

Binding your program to a menu or toolbar. You can add your own
menu command or toolbar item to the Visio user interface and use it
to run your program. For details, see Chapter 16, “Customizing the
Visio user interface.”



3 6 6 C  H  A  P  T  E  R    1  7

Distributing a program

The files you distribute to your users depend on the type of solution
you create. Typically, if you create a VBA program that is stored
within a template, you’ll distribute only the template and its stencils
(and the files the VBA program references, if any). If you create an
external program (.EXE), you may need to distribute the .EXE file, a
template, and stencils. If you create an add-on, you may need to
distribute only the .EXE file or Visio library (.VSL) file. Lastly, if you
create only a custom user interface (.VSU), you may need to distribute
only that file. You’ll also need to be aware of copyright issues (dis-
cussed on the next page) if you distribute Visio shapes.

Distributing VBA programs
VBA programs are stored in a Visio template, stencil, or drawing. The
only file you typically need to distribute is a template (.VST) or draw-
ing (.VSD) and its stencils (.VSS). If your VBA project references other
Visio files, you need to distribute those also. There is no separate pro-
gram file for a VBA program.

This illustration displays the possible items of a VBA solution.

Visio template: WorkFlow.vst

Company Logo

Drawing

Module1 UserForm1 ThisDocument

Module1

Sub Name (no arguments)

Visual Basic code

End Sub

Function Name (argument list)

Visual Basic code

Name=Return value

End Function

VB project containing macros

Stencil

VBA solution and its elements: template, stencil, and VBA macros

When a user creates a new document from a Visio file, Visio copies
the VBA program to the new document and includes references to the
same open stencils and other Visio files (if any).

Drawing file size in a VBA solution

Although it’s convenient to distribute, a tem-
plate that contains a lot of VBA code can
cause drawings to be much larger than nec-
essary, because the template’s code is
copied to each drawing created from the
template. Such a template can also make a
solution more difficult to maintain or up-
grade, because each drawing has its own
copy of the code.

If the purpose of the code is to help the
user create a drawing, and it won’t run
again after that task is done, the template is
probably still the best place for it. However,
as an alternative, you can place the bulk of
the code in a Visio stencil (.VSS) and call it
from the template. This helps conserve
drawing file size and improves maintain
ability, because you can simply distribute
a new version of the stencil to upgrade
your solution.

If you refer to code in a stencil from another
VBA project, Visio automatically opens that
stencil and will not permit the user to close
it. Such a stencil is opened floating rather
than docked, however, which may be less
intuitive for users. If your solution also pro-
vides masters, consider placing the masters
in one stencil and the code in another. Us-
ers can then minimize the floating stencil
and work with the other stencil in the usual
way.

You can minimize a floating stencil from a
program by using embedded Windows API
calls. For details about such calls, see the
Microsoft Platform SDK.



R U N N I N G   A N D   D I S T R I B U T I N G   A   S O L U T I O N 367

Important licensing information
The stencils, masters, templates, and source code provided with Visio
products are copyrighted material, owned by Visio Corporation and
protected by United States copyright laws and international treaty
provisions.

What this means to you as a solutions developer is this: You cannot
distribute any copyrighted master provided with any Visio product,
for any purpose other than viewing or modifying a drawing that con-
tains the master, unless your user already has a licensed copy of a
Visio product that includes that master. This includes shapes you cre-
ate by modifying or deriving shapes from copyrighted masters.

For example, you can’t legally provide a shape from a Visio Technical
stencil to a user who has Visio Professional (and therefore does not
have a licensed copy of the Technical stencil that contains the master).

The Visual Basic and C++ files of constants and global functions pro-
vided in the DVS (Developing Visio Solutions) folder on your Visio
5.0 CD are also copyrighted. You can include these files in your
projects and use them to build executable programs, but you cannot
distribute them to another developer unless he or she already has a li-
censed copy of a Visio product that includes those files.

The source code files for the sample programs provided in the DVS

folder on your Visio 5.0 CD are intended to show how Automation
works in Visio. You can study these files or use them in your
programs.

For complete details about licensing of masters and Visio products,
see the Visio Software License Agreement included with this book.

Copyrighting your own shapes

Copyright information for a master is
displayed in the Special dialog box for the
master or any instance of the master. You
can add copyright information to the shapes
you create by typing it in the Special dialog
box. However, you can do this only once for
a shape (unless you choose Undo
immediately afterward). Thereafter, the
copyright information for that shape cannot
be changed.

To open the Special dialog box, select a
shape, and then choose Special from the
Format menu.





Topics in this chapter

Adding ActiveX controls to a Visio drawing ............................................... 370

Handling a control’s events ......................................................................... 372

Working with controls at run time .............................................................. 373

Distributing controls in a Visio solution ...................................................... 375

Listing shapes and custom properties in controls: an example ................. 375

18
Using ActiveX controls
in a Visio solution

You can add ActiveX controls directly to Visio 5.0 drawings to make
your Visio solution interactive. For example, you might add standard
Windows dialog box controls such as single-click buttons,
checkboxes, or list boxes. Or, you might add custom controls that you
develop or purchase to incorporate more complex functionality, such
as animation.

This chapter describes how to add ActiveX controls to a Visio draw-
ing, including how to set tab order and protect controls from
inadvertent changes by the user. It describes how to handle a control’s
events, work with controls at run time, and distribute ActiveX con-
trols in a Visio solution. The chapter ends with an example of
controls that interact with shapes on a drawing.



3 7 0 C  H  A  P  T  E  R    1  8

Adding ActiveX controls to a Visio drawing

Using ActiveX controls in your Visio solutions allows you to create
a user interface that is consistent with solutions based on other
Windows applications. Because the controls are on the drawing page,
they’re nonmodal—that is, the user can work freely with both
controls and Visio shapes without having to display and dismiss a
Visual Basic for Applications (VBA) form.

Working in design mode
To work with ActiveX controls in a Visio drawing, you switch be-
tween design mode and run mode. In design mode, you can insert
controls, move and size them, and set their properties. In run mode,
you can use the controls—click a command button to run its Click
handler, for example. For other tasks, it doesn’t matter whether Visio
is in design mode or run mode—all other Visio commands and tools
work the same way in either mode.

The document’s mode is synchronized with that of its VBA project,
so both the document and its project are always in the same mode.
While a document is in design mode, none of its objects (including
controls) issues events.

A Visio document opens in run mode by default, unless macro virus
protection is set in Visio. To switch to design mode, make sure the
Developer toolbar is displayed (if not, choose Toolbars from the View
menu, then choose Developer). Then click the Design Mode button,
which inverts to indicate that Visio is in design mode.

NOTE  If macro virus protection is set in Visio, it prompts the user to
enable or disable macros when a document is opened. If the user dis-
ables macros, the document opens in design mode and cannot be
switched to run mode until the document is closed and reopened
with macros enabled. To set macro virus protection, choose Options
from the Tools menu, then check or clear Macro Virus Protection on
the General tab.

Inserting a control in a drawing
Before you can insert an ActiveX control in a Visio drawing, the con-
trol must be installed on your system. Certain controls might also
require that you have a design license to use them in applications that
you develop.

Design Mode button

Insert Control button



U S I N G   A C T I V E X   C O N T R O L S   I N   A   V I S I O   S O L U T I O N 371

You insert a control by selecting it in the Control dialog box, which
lists all of the ActiveX controls installed on your system, including
those installed by other applications. Such applications typically pro-
vide a run-time license for the ActiveX controls they contain. The
run-time license entitles you to use those controls in the application
that contains them, but not to insert the controls in applications that
you develop. To insert such controls in your applications, you need
a design license for them. For details, see “Distributing controls in a
Visio solution” later in this chapter.

To insert an ActiveX control in a drawing:

1. Click Insert Control on the Developer toolbar.

2. In the Control dialog box, select a control. For example,
Microsoft Forms 2.0 CommandButton.

3. Click OK to insert the control on the drawing page.

4. Move and size the control as needed.

A selected control has green selection handles, just like a selected
shape, and you move and size it in exactly the same way.

5. Edit the control and set its properties as needed.

To edit a control, double-click it. A control activated for in-place
editing in this way looks the same in Visio as in any ActiveX
container. To set a control’s properties, use the Visual Basic Editor.

After you insert a control in a drawing, you can work with it in much
the same way as with a Visio shape—for example, you can cut or copy
and paste the control, duplicate it with Ctrl+drag, or make it into a
master by dragging it to a stencil.

Setting tabbing order of controls

When Visio is in run mode, pressing the Tab
key moves the focus from one control to an-
other on the drawing page. If you add more
than one control to a drawing, you’ll want
the focus to move in a logical order.

The tabbing order of controls corresponds
to the stacking order of the controls on the
drawing page, starting with the backmost
control. Initially, this is the order in which
you inserted the controls in the drawing,
with the most recently inserted control at
the front.

To adjust the tab order, use the Bring For-
ward, Bring To Front, Send Backward, and
Send To Back commands on the Visio
Shape menu to change the stacking order of
controls relative to each other.

A selected control

A control activated for in-place editing



3 7 2 C  H  A  P  T  E  R    1  8

Protecting controls from changes
When you distribute a solution that contains controls, you might
want users to be able to edit the shapes in the drawing, but you typi-
cally won’t want them to be able to edit the controls. You can protect
controls from user changes, even in design mode, by locking the
shapes and protecting the document.

To protect controls from changes:

1. Select the controls on the drawing.

2. Choose Protection from the Format menu, then check From
Selection.

3. Choose Protect Document from the Tools menu, then check
Shapes.

4. For added security, define a password in the Protect Document
dialog box.

The user will be able to modify the drawing but not the controls.

Handling a control’s events

After you add an ActiveX control to the drawing page, you can handle
the various events issued by the control—for example, if you insert a
command button, you can handle its Click event. You handle a
control’s events by writing event procedures in the VBA project of the
Visio drawing that contains the control, just as you would handle a
Visio event.

To write an event procedure for a control:

1. Select the control from the object list in the Visual Basic Editor.

2. Select the event you want to handle from the procedure list.

3. Fill in the event procedure in the code window.

For example, the following event procedure for a command button
deletes a shape in the Visio drawing when a user selects the shape’s
name in a listbox control and clicks the command button:

Printing a drawing without its controls

If you want the user to be able to print a
drawing but not its controls, assign all of the
controls to the same layer and make the
layer nonprinting. For details about layers,
search online help for “layers on pages.”



U S I N G   A C T I V E X   C O N T R O L S   I N   A   V I S I O   S O L U T I O N 373

Private Sub CommandButton1_Click( )

Dim visShape As Visio.Shape

If ListBox1.ListIndex >=0 Then

set visShape = _

ActivePage.Shapes(ListBox1.Text)

visShape.Delete

End If

End Sub

Working with controls at run time

An ActiveX control typically exposes properties and methods you can
use at run time to work with the control programmatically. For ex-
ample, a listbox control has a ListIndex property that returns the
index of the selected item and a Text property that returns the text of
the item at that index.

About control names
A control has two names: a Visio name and a VBA name. Initially,
these names are identical, consisting of the control type plus an inte-
ger that makes the name unique. For example, the first listbox control
you insert in a drawing is given the name ListBox1, and you can use
this name to refer to the control in both VBA code and in Visio.
(Visio follows a different naming convention for Visio shapes.
For details, see “Getting information from shapes” in Chapter 13,
“Getting information from Visio drawings.”)

Although initially set to the same value, the two names are program-
matically distinct and cannot be used interchangeably:

• You use a control’s VBA object name to refer to the control in
VBA code. You change this name by setting the control’s (Name)
property in the VBA properties window in the Visual Basic
Editor. You cannot use a control’s VBA object name to get a
Shape object from a Visio collection, such as the Shapes collec-
tion; instead, you must use the control’s Shape.Name
property—for example, ListBox1.Shape.Name.

Using the Visio ambient properties

If you’re developing ActiveX controls for use
in Visio, you can take advantage of the am-
bient properties that Visio defines. A control
uses an application’s ambient properties to
maintain a consistent appearance with
other controls in a document. For example,
the BackColorBackColorBackColorBackColorBackColor property specifies the color
of a control’s interior. Ambient properties
are read-only.

To list the Visio ambient properties, display
the shortcut menu in the Visual Basic Object
Browser, choose Show Hidden Members,
and then select IVAmbientsIVAmbientsIVAmbientsIVAmbientsIVAmbients.



3 7 4 C  H  A  P  T  E  R    1  8

• You use a control’s Visio name to get the Shape object that
represents the control from a Visio collection such as OLEObjects.
You change this name by editing it in the Name box in the Special
dialog box in Visio (select the control and choose Special from
the Format menu to display this dialog box) or by setting the
control’s Shape.Name property in VBA. You cannot use a
control’s Visio name to refer to the control in VBA code.

For your own convenience, if you change one name from the default
value, you might want to change the other name so that the control’s
VBA and Visio names are identical.

Getting a control from the OLEObjects collection
You can get the Shape object that represents a control from the
OLEObjects collection of a Visio Document, Page, or Master object.
You can also get a control from the Shapes collection of a document,
page, or master, but it’s much faster to use the OLEObjects collection
because it contains only linked or embedded objects, whereas the
Shapes collection also includes all the Visio shapes in that document,
page, or master—potentially many more objects.

The OLEObjects collection contains an OLEObject that represents
each linked or embedded object in a Visio document, page, or master,
plus any ActiveX controls. The Object property of an OLEObject re-
turns a reference to the linked or embedded object that you can use to
access the object’s properties and methods.

You can retrieve a control from the OLEObjects collection by its in-
dex within the collection or by the name assigned to the control in
Visio. Initially, this name is identical to the value of the control’s VBA
object name, as described in the previous section, “About control
names.” For example, the following statements get a Visio shape
named ListBox1:

Dim g_listbox as Object

Set g_listbox = _

Document.OLEObjects("ListBox1").Object

If you want to perform the same operation on all controls, iterate
through the OLEObjects collection and check the ForeignType prop-
erty of each OLEObject object to see whether the visTypeIsControl
bit is set. If (ForeignType And visTypeIsControl) is TRUE, the object
is an ActiveX control.



U S I N G   A C T I V E X   C O N T R O L S   I N   A   V I S I O   S O L U T I O N 375

Distributing controls in a Visio solution

VBA in Visio 5.0 includes the Microsoft Forms 2.0 ActiveX controls,
which include standard dialog box controls such as buttons,
checkboxes, text boxes, and combo boxes. You can distribute these
controls most simply with a Visio solution because they are included
with Visio—no special installation or additional licensing is required.

You might acquire other controls by installing Visual Basic or C++,
downloading controls from the Internet, or buying third-party pack-
ages. Distributing a solution that contains such controls can be a little
more complicated:

• Because the controls may or may not already be on the user’s
system, your solution’s Setup program needs to check whether
the control is already installed and, if not, install the control and
register it on the user’s system.

• Such controls typically come with a design-time license so you
can use them in your development projects, and might require a
run-time license for distribution.

For details about installing, registering, and licensing third-party
controls, see the developer documentation provided with the control.

Listing shapes and custom properties in controls: an example

The drawing file VBA ACTIVEX SAMPLE.VSD is an example of a draw-
ing that uses ActiveX controls to interact with shapes. This example
contains a combo box control that lists the names of shapes in the
drawing, text boxes that display the text and certain custom proper-
ties of a selected shape, and a command button that updates a
selected shape with new values in the text boxes. The drawing also
maintains a running total of cost and duration for all process flow-
chart shapes on the page, updating the totals as shapes are added,
deleted, or changed.



3 7 6 C  H  A  P  T  E  R    1  8

Start
Call

Received
Technical
Quest ion?

Route to
Customer

Service
End

Yes

Route to Tech
Support

No

NameID:

Process Name:

Cost:

Duration:

Total Cost:

Total Duration:

2 min

$10.00

42 min

$95.00

Technica l  Quest ion?

Decis ion

Update
Propert ies

The example uses several event handlers to accomplish these tasks:

• Document_DocumentOpened. Initializes controls on the page by
clearing the combo box and text boxes, filling the combo box
with a list of shapes on the page, and setting a variable,
theWindow, to the Visio active window.

• Document_ShapeAdded. Adds a process flowchart shape to the
combo box list when the user adds it to the drawing.

• Document_BeforeSelectionDelete. Removes a process flowchart
shape from the combo box list when the user deletes it from the
drawing.

• theWindow_SelectionChanged. Sets the shape name shown in the
combo box to the shape that is selected in the drawing.

• ComboBox1_Change. Selects a shape in the drawing and displays
its custom properties in the text boxes when the user highlights
the shape’s name in the combo box list.

• CommandButton1_Click. Updates the selected shape in the
drawing with current values in the text boxes.



U S I N G   A C T I V E X   C O N T R O L S   I N   A   V I S I O   S O L U T I O N 377

The following code shows the ComboBox1_Change event handler.

ComboBox1_Change Handler in \DVS\VBA SOLUTIONS\VBA ACTIVEX SAMPLE.VSD

Private Sub ComboBox1_Change()

' The user has clicked on an item in the list box

Dim strName As String

On Error GoTo Ignore:

If (bInComboBoxChanged) Then

' Exit without doing anything; already responding to the initial Change event

Exit Sub

End If

' Set flag indicating the program is in the Change routine. If an error occurs

' after this, it skips to the Ignore label, after which the flag is reset.

bInComboBoxChanged = True

' Calling DeselectAll and Select on the Window object set ComboBox1.Text

' (see theWindow_SelectionChanged). Save the current text before calling

' DeselectAll so that we know which shape to select.

strName = ComboBox1.Text

' Select the item and get its properties

ActiveWindow.DeselectAll

ActiveWindow.Select ActivePage.Shapes(strName), visSelect

With ActivePage.Shapes(strName)

TextBox1.Text = .Text

TextBox2.Text = Format(.Cells("prop.cost").ResultIU, "Currency")

TextBox3.Text = Format(.Cells("prop.duration").Result(visElapsedMin), _

"###0 min.")

End With

Ignore:

' Set flag indicating the program is NOT in the Change handler any more

bInComboBoxChanged = False

Exit Sub

End Sub



3 7 8 C  H  A  P  T  E  R    1  8

This handler does the following:

1. Clears the selection in the drawing.

2. Selects the shape whose name corresponds to the value of the
ComboBox1 control’s Text property. If the drawing doesn’t
contain such a shape, the handler simply exits.

3. Sets the TextBox1 control’s Text property to the Text property of
the shape.

4. Sets the TextBox2 control’s Text property to the value of the
shape’s Cost custom property, expressed as currency.

5. Sets the TextBox3 control’s Text property to the value of the
shape’s Duration custom property, expressed as minutes.

Note the global variable bInComboBoxChanged, which indicates
whether the ComboBox1_Change handler is being called for the first
time. Clearing the selection and selecting a shape trigger
Window_SelectionChanged events. However, this sample’s handler
for that event sets the ComboBox1.Text property, which triggers a
ComboBox1_Change event and causes the ComboBox1_Change
handler to run again. Setting bInComboBoxChanged the first time the
handler runs allows the handler to skip the selection operations the
second time, preventing the sample from going into a recursive loop.

It’s also possible to prevent such loops by setting the EventsEnabled
property of the Application object to disable event handling while the
handler performs operations that would otherwise trigger events and
cause handlers to run inappropriately. However, this approach is not
recommended because it disables all events for the instance of Visio,
which might interfere with other solutions running on the user’s sys-
tem (especially if an error in your solution prevents it from
re-enabling events). Unless you are certain that your solution is the
only one that will be handling Visio events, it’s recommended that
you use the global variable technique shown in this sample.

For the complete listing of this sample, see \DVS\VBA SOLUTIONS\VBA

ACTIVEX SAMPLE.VSD on your Visio 5.0 CD.



Topics in this chapter

The Visio object model ................................................................................ 380

Getting an instance of Visio ........................................................................ 381

Creating a Visio document .......................................................................... 387

Handling errors ............................................................................................ 388

Interpreting the command string Visio sends to your program .................. 389

Using the Visio type library ......................................................................... 392

Using the Visual Basic files provided on your Visio 5.0 CD ........................ 393

Migrating from Visual Basic to VBA ........................................................... 393

19
Programming Visio
with Visual Basic

In previous chapters, this book has focused on writing programs in
the Visual Basic for Applications (VBA) development environment
within Visio. This chapter focuses on specific issues related to writing
external standalone programs to control Visio using the Visual Basic
development environment.

This chapter discusses using the Visio object model from an external
development environment and describes how to access the Applica-
tion object from an external program. It discusses creating a Visio
document, handling errors, and using the Visio type library in Visual
Basic projects. It also briefly describes the Visual Basic files provided
in the DVS (Developing Visio Solutions) folder on your Visio 5.0 CD and
the issues that arise when migrating from Visual Basic to VBA.



3 8 0 C  H  A  P  T  E  R    1  9

The Visio object model

Documents

Application

VBE

1 If the Shape object is a group, it
also has a Shapes collection.

2 If the MenuItem object is a
cascading menu, it also has a
MenuItems collection.

3 A UI object can represent menus
and accelerators or toolbars and
status bars. For details, see
chapter 16, “Customizing the
Visio User Interface.”

4 Many Visio objects have an
EventList collection. For details,
see the online Visio Automation
Reference.

Key

Collection

Object

AddOns

AddOn

Fonts

Font

Styles

Style

Pages

Page

Selection

Masters

Master

Layers

Layer

Shapes

Shape

Document

Shapes

Shape

Cell

Characters

Colors

Color

Connects

Connect

Windows

Window

Connects

Connect

EventList

Event

3

VBProject

Toolbars

Toolbar

StatusBarItems

StatusBarItem

ToolbarItems

ToolbarI tem

ToolbarSets

ToolbarSet

StatusBars

StatusBar

MenuItems

MenuItem

MenuItems

MenuItem

Menus

Menu

MenuSets

MenuSet

AccelItems

AccelItem

AccelTables

AccelTable

UI object

UI object

3

1

2

4

Connects

Connect

Layers

Layer

Shapes

Shape



P R O G R A M M I N G   V I S I O   W I T H   V I S U A L   B A S I C 381

The Visio object model represents the objects, properties, and methods
that Visio exposes through Automation. More important, it describes
how the objects are related to each other. Many of the objects are used
primarily to access other objects. For more information about the
Visio global object, see Chapter 11, “Using Visio objects.”

Getting an instance of Visio

Any external program that controls Visio through Automation must
interact with an instance of Visio. Depending on the purpose of your
program, you may run a new instance of Visio or use an instance that
is already running.

Creating an Application object. After you declare a Visio object vari-
able for an Application object, you can use the CreateObject function
in a Set statement to create the object and assign it to the object vari-
able, which you can then use to control the instance. For example:

Dim appVisio as Visio.Application

...

Set appVisio = CreateObject("visio.application")

Creating an Application object runs a new instance of Visio, even if
other instances are already running.

You can use the global constant visAPI defined in VISCONST.BAS

instead of visio.application in CreateObject and GetObject state-
ments. For example:

Dim appVisio as Visio.Application

...

Set appVisio = CreateObject(visAPI)

Getting an Application object. You can use the GetObject function to
retrieve an Application object for an instance of Visio that is already
running. For example:

Dim appVisio as Visio.Application

...

Set appVisio = GetObject(, "visio.application")

Visio object types

You can define Visio object variables using
Visio object types or the more general Ob-
ject type. Declare object variables using
Visio object types like this:

Dim appVisio as
Visio.Application

instead of:

Dim appVisio as Object

This increases the speed of your program.
All the example code in this book uses Visio
object types. To use Visio object types,
you must set a reference to the Visio type
library. For details, see Chapter 2, “Tools
for creating solutions.”



3 8 2 C  H  A  P  T  E  R    1  9

Notice the comma, which indicates that the first argument to
GetObject—a path to a disk file—has been omitted. The comma is
required because under some circumstances GetObject takes a file
name as its first argument. To retrieve an instance of Visio, however,
you must omit the file name argument, or an error will occur. For de-
tails, see GetObject in your Visual Basic documentation.

If more than one instance of Visio is running, GetObject returns the
active instance. When a program is run as an add-on or by double-
clicking a shape, the active instance is the one from which the
program was run. Otherwise it is the instance that was most recently
run or brought to the front. If no instance of Visio is running,
GetObject causes an error.

Releasing an Application object. An application instance persists until
you use the Quit method or until a user closes the instance. You may
want to include some error handling or use events for the latter situa-
tion, which can occur unexpectedly while your program is running.

Shortcuts for working with instances. If CreateObject or GetObject
fails for some reason—for example, if Visio isn’t installed on the
user’s system when CreateObject is called, or if GetObject can’t find
a running instance—an error occurs. The vaoGetObject function in
VISREG.BAS provides a convenient alternative to CreateObject and
GetObject because it includes error handling for these situations:

• If an instance of Visio is already running, vaoGetObject assigns
that instance to g_appVisio and returns visOK. (g_appVisio is a
global variable maintained by VISREG.BAS.)

• If no instance is running, vaoGetObject calls CreateObject to
run a new instance, assigns that instance to g_appVisio, and
returns visOK.

• If Visio is not installed or an error occurs, vaoGetObject returns
visError. (The constants visOK and visError are defined in
VISREG.BAS.)



P R O G R A M M I N G   V I S I O   W I T H   V I S U A L   B A S I C 383

VISREG.BAS contains a library of functions that streamline working
with instances of Visio. The library maintains the global variable
g_appVisio. To use the library of functions, include VISREG.BAS in
your Visual Basic project and use g_appVisio to refer to the Applica-
tion object.

The following example uses vaoGetObject to get an instance of Visio.
If no instance is running, it runs one. If it cannot run an instance, it
displays a message box.

Sub appConnect()

If vaoGetObject() <> visOK Then

MsgBox (“Unable to run Visio.”)

End If

End Sub

Getting an active instance of Visio
The GetDocName subroutine gets the active instance of Visio and a
document that is open in that instance. The subroutine follows these
steps:

1. Gets an Application object that represents the active instance of
Visio.

2. Gets the Application object’s Documents collection.

3. Gets the first Document object from the collection.

4. Gets the Document object’s Name property and displays the
value returned by the Name property in a text box on a user
form.

The code for this example is in \DVS\VB SOLUTIONS\DVS.BAS. If you
try this example, make sure you run an instance of Visio and open a
Visio document before you run the program.



3 8 4 C  H  A  P  T  E  R    1  9

GetDocName in \DVS\VB SOLUTIONS\DVS.BAS

Sub GetDocName()

Dim appVisio As Visio.Application ‘ Visio instance

Dim docObj As Visio.Document ‘ A Document

Dim strDocName As String ‘ String to hold name

‘ Retrieve the current instance of Visio

Set appVisio = GetObject(, “visio.application”)

‘ Get the first document from the Documents collection

‘ The code below uses the more typical short form of the code

‘ Set docObj = Documents.Item(1)

Set docObj = appVisio.Documents(1)

‘ Get the Document Name property

strDocName = docObj.Name

‘ Set the Text property of the text box to the document name

UserForm1.TextBox1 = strDocName

UserForm1.TextBox1.Enabled = False

‘ Set the label text and show the form

UserForm1.Label1.Caption = “Document name:”

UserForm1.Show

End Sub

Notice the use of object variables to hold references to the Visio ob-
jects used in the program—starting with the Application object. The
external program progresses from Application object to Documents
collection to Document object. For more information about Visio
objects, see Chapter 11, “Using Visio objects.”

Creating an application object
The Visual Basic subroutine creates an Application object that runs
an instance of Visio and creates a drawing by opening a template and
stencil. This program follows these steps:

1. Runs an instance of Visio.

2. Creates a new document based on the VB SOLUTIONS.VST

template.



P R O G R A M M I N G   V I S I O   W I T H   V I S U A L   B A S I C 385

3. Drops an instance of the Rectangle master from the
VB SOLUTIONS.VSS stencil on the drawing page.

4. Sets the text of the rectangle shape on the drawing page to
“Hello World!”

5. Saves the document.

6. Closes the instance of Visio.

The code for this example is also in \DVS\VB SOLUTIONS\DVS.BAS.
Notice that this example, unlike the previous one, actually creates an
Application object that runs a new instance of Visio. It also creates a
Visio document. For more information about creating or adding
Visio document objects, see “Creating a Visio document” later in this
chapter.

If you try this example, make sure the VB Solutions template and
stencil are installed in the Visio Templates and Stencils paths respec-
tively. It doesn’t matter if an instance of Visio is already running; the
program will run a new one.

HelloWorld in \DVS\VB SOLUTIONS\DVS.BAS

Sub HelloWorld ()

'Object variables to be used in the program.

Dim appVisio As Visio.Application 'Instance of Visio

Dim docsObj As Visio.Documents 'Documents collection of instance

Dim docObj As Visio.Document 'Document to work in

Dim stnObj As Visio.Document 'Stencil that contains master

Dim mastObj As Visio.Master 'Master to drop

Dim pagsObj As Visio.Pages 'Pages collection of document

Dim pagObj As Visio.Page 'Page to work in

Dim shpObj As Visio.Shape 'Instance of master on page

'Run an instance of Visio and create a document based on the Basic template.

'A new document always has one page, whose index in the Pages collection is 1.

Set appVisio = CreateObject("visio.application")

Set docsObj = appVisio.Documents

Set docObj = docsObj.Add("VB Solutions.vst")

Set pagsObj = appVisio.ActiveDocument.Pages

Set pagObj = pagsObj.Item(1)

Get an instance’s window handle

You can exert more control over an instance
by getting its window handle. After you get
the window handle, you can manage the
instance’s frame window as you would
manage any other frame window from a
Windows application. For example, you
might minimize the instance while your pro-
gram is creating a complex drawing to save
time repainting the screen.

The Application object’s WindowHandle32
property returns the window handle
(HWND) for the main—or frame—window
of an instance. You can use the HWND with
standard Windows API calls to obtain
other handles. For example, you can pass
the window handle to GetWindowTask to
get the Visio task handle.

For details about using Windows API calls
in a Visual Basic program, see your
Visual Basic documentation. For details
about the calls themselves, see the
Windows API Reference (provided with
Visual Basic as an online help file).



3 8 6 C  H  A  P  T  E  R    1  9

'Create a document based on the VB Solutions template which automatically opens

'the VB Solutions stencil

Set stnObj = appVisio.Documents("VB Solutions.vss")

Set mastObj = stnObj.Masters("Rectangle")

'Drop the rectangle in the approximate middle of the page.

'Coordinates passed with Drop are always inches.

Set shpObj = pagObj.Drop(mastObj, 4.25, 5.5)

'Set the text of the rectangle.

shpObj.Text = "Hello World!"

'Save the drawing and quit Visio. The message pauses the program

'so you can see the Visio drawing before the instance closes.

docObj.SaveAs "hello.vsd"

MsgBox "Drawing finished!", , "Hello World!"

appVisio.Quit

End Sub

CreateObject is a Visual Basic function that creates an Automation
object—in this example, CreateObject runs a new instance of Visio
and returns an Application object that represents the instance, which
is assigned to the variable appVisio. The next six Set statements ob-
tain references to the other objects used in this program by getting
properties of objects obtained earlier. Notice again the progression
through the Visual Basic–specific Visio object model from Applica-
tion object to Documents collection, to Document object, to Pages
collection, to Page object.

Set docObj = docsObj.Add("VB Solutions.vst") uses the Add method
to open a template and add it to the Documents collection. For more
information about adding Document objects, see the next section,
“Creating a Visio document.”

The statement appVisio.Quit uses the Quit method to close the in-
stance of Visio assigned to appVisio.



P R O G R A M M I N G   V I S I O   W I T H   V I S U A L   B A S I C 387

Creating a Visio document

After you get an Application object that represents an instance of
Visio, the next step is to create or open a document.

To create a new document from a program, you first get the Docu-
ments property of the Application object to get its Documents
collection, then use the Add method of the Documents collection to
create the document. To base the new document on a template, sup-
ply the file name of that template as an argument to Add. For
example, the following statement creates a new document based on
the Basic Diagram template provided with Visio:

Dim appVisio as Visio.Application

Dim docObj as Visio.Document

Set appVisio = CreateObject(“visio.application”)

Set docObj = appVisio.Documents.Add("basic _

diagram.vst")

If you don’t specify a path with the template file name, Visio searches
the folders shown in the Templates box on the File Paths tab. To find
out the current path settings, get the Application object’s
TemplatePaths property. For details about displaying and using the
File Paths tab, search online help for “file paths tab.”

The Application object has a corresponding property for each of the
folders shown on the File Paths tab. For example, the TemplatePaths
property corresponds to the Templates folder on the tab. You can get
any of these properties to find the current path, or you can set the
property to change the path. For details, see the online Visio Automa-
tion Reference.

In the previous example, the new document has the drawing scale,
styles, and document settings defined in BASIC DIAGRAM.VST. This
template happens to have a stencil—BASIC SHAPES.VSS—in its
workspace, so creating the document also opens that stencil as read-
only in a stencil window and adds the stencil file to the Documents
collection of the instance.

To create a new document without basing it on a template, use a null
string ("") in place of the file name argument. A document created in
this way has the Visio default drawing scale, styles, and other docu-
ment settings. No stencils are opened.



3 8 8 C  H  A  P  T  E  R    1  9

Handling errors

When an error occurs during program execution, Visual Basic gener-
ates an error message and halts execution. You can prevent many
errors by testing assumptions before executing code that will fail if
the assumptions aren’t valid. You can trap and respond to errors by
using the On Error statement in your program. For details about On
Error, see your Visual Basic documentation.

Errors can arise from a variety of situations. This section discusses
one common situation specific to running an instance of Visio from
an external standalone program. For more information about com-
mon situations in which errors can occur, see “Handling errors” in
Chapter 11, “Using Visio objects.”

Make sure the program is
running in the right context
If you’ve decided which context a program will run in, you can make
some assumptions about the environment. For example, if you’re
writing an add-on, you can probably assume that an instance of Visio
is already running.

However, if your program requires a running instance of Visio, it’s a
good idea to make sure the instance is there. For an example, see the
vaoGetGIO function in VISREG.BAS. This routine uses GetObject to
retrieve the active instance of Visio. If there is no active instance,
GetObject causes an error. The vaoGetGIO function uses OnError
to trap the error and returns FALSE instead of halting execution.

Or, if your program requires an open document, make sure one is
available. For example:

Dim appVisio as Visio.Application

Dim docObj As Object

...

Set docObj = appVisio.ActiveDocument

If docObj is Nothing Then

'there are no documents open, handle the error

Else

'there is a document open, continue processing

End If

Visio file extensions

Visio recognizes four different file exten-
sions—.VSD, .VSS, .VST, and .VSW—which
identify drawing, stencil, template, and
workspace files, respectively. You might as-
sume that these files have different formats,
but they don’t—the file extension simply
determines how Visio opens the document
and what it displays. For details about Visio
files, see Chapter 2, “Tools for creating
solutions.”



P R O G R A M M I N G   V I S I O   W I T H   V I S U A L   B A S I C 389

Interpreting the command string Visio sends to your program

When an executable program (.EXE) is run, it receives a command
string from the environment that launched the program. When a
Visio library (.VSL) is run, Visio passes the same command string to
the .VSL file in an argument structure with the Run message. For de-
tails, see Chapter 20, “Programming Visio with C++.”

The command string sent by Visio identifies Visio as the environment
that launched the program, and may contain values (described be-
low) that you can use to retrieve certain objects in addition to
arguments for the program. The values in the string depend on how
the program was run—from the Macro submenu or from a
ShapeSheet formula, with arguments or without.

Running the program from the Macro submenu. If the program is run
from the Macro submenu—the user chooses it from either the Mac-
ro submenu or the Macros dialog box—the Visio command string
looks like this:

"/visio=instanceHandle32"

The significant portion of this command string is /visio, which you
can use to confirm that the program was run from Visio and not
some inappropriate environment. instanceHandle is the Windows
handle of the Visio instance from which the program was run—an
integer (4-byte value). You usually won’t do anything with the in-
stance handle, although you might compare it with the handle of the
Application object you’re working with to make sure they match. For
details about instance handles, see the InstanceHandle32 properties
in the online Visio Automation Reference.

Running the program when a formula is evaluated. If a shape formula
uses a RUNADDON function to run the program when that formula is
evaluated, the command string Visio sends to the program looks like
this:

"/visio=instanceHandle32 /doc=docIndex / _

page=pagIndex /shape=NameID"

Various parts of the command string identify objects that contain the
shape whose formula ran the program. docIndex is the index of the
Document object, and pagIndex the index of the Page object. You can
use these values to get the corresponding objects from their respec-
tive collections. For example:

Parsing the command string

To retrieve and parse a command string,
use the functions provided by your develop-
ment environment for that purpose. In Visual
Basic, for example, use Command to retrieve
the command string and string functions
such as Mid and StrComp to parse it.

Parsing is the process of separating state-
ments into syntactic units—analyzing a
character string and breaking it down into a
group of more easily processed components.



3 9 0 C  H  A  P  T  E  R    1  9

Dim docObj as Visio.Document

docObj = Visio.Application.Documents.Item(docIndex)

NameID is the NameID property of the shape whose formula was
evaluated. You can use this value to get the corresponding Shape ob-
ject. For example:

Dim shpObj as Visio.Shape

shpObj = Visio.Application.Documents(docIndex). _

Pages(pagIndex).Shapes(NameID)

If the cell that was evaluated is in a master rather than in a shape on a
drawing page, the command string looks like this:

"/visio=instanceHandle32 /doc=docIndex /master= _

masterIndex/shape=NameID"

In this case, you would get the Shape object as follows:

Dim shpObj as Visio.Shape

shpObj = Visio.Application.Documents(docIndex). _

Masters(masterIndex).Shapes(NameID)

If the cell is in a style rather than a shape or a master, the command
string looks like this:

"/visio=instanceHandle32 /doc=docIndex / _

style=NameID"

Running the program with arguments. If a cell formula uses a
RUNADDONWARGS function to run the program, the command
string includes the specified arguments:

"/visio=instanceHandle /doc=docIndex /page=pagIndex _

/shape=Sheet.ID arguments"

If a custom menu command or toolbar button’s AddOnArgs prop-
erty contains arguments, the command string looks like this:

"/visio=instanceHandle arguments"

The arguments string can be anything appropriate for your program.



P R O G R A M M I N G   V I S I O   W I T H   V I S U A L   B A S I C 391

Note, however, that the entire command string is limited to 127 char-
acters including flags (/visio=, /doc=, /page=, and /shape, for
example), so in practice the arguments should not exceed 50 charac-
ters. If the entire command string exceeds 127 characters, an error
occurs and Visio will not run the program.

Running the program from the Startup folder. If the program is run
from the Visio Startup folder, the command string also includes the
flag /launch.

Interacting with other programs
While your program is running, you can find out which programs are
available to Visio, or install another program, by getting the Addons
collection of an Application object. This collection contains an
Addon object for each program in the folders specified by the Appli-
cation object’s AddonPaths and StartupPaths properties or added
dynamically by other programs.

The programs represented by Addon objects are listed on the Macro
submenu and in the Macros dialog box. You can add a program by
using the Add method of the Application object’s Addons collection.
The newly added program remains in the collection until the instance
of Visio is closed.

Dim addonsObj as Viso.Addons

Dim addonObj as Visio.Addon

Set addonsObj = Visio.Application.Addons

Set addonObj = addonsObj.Add("c:\temp\myprog.exe")

NOTE  No object is returned if the program is a .VSL file.

Get the Name property of an Addon object to find out its name; get
its Enabled property to find out whether it can be run. An .EXE file is
always enabled, but a program in a Visio library may not be. For de-
tails, see Chapter 20, “Programming Visio with C++.”

To run another program, use the Run method of the corresponding
Addon object, and include any necessary arguments or a null string.

For more details about Addon objects, their methods, and their prop-
erties, see the online Visio Automation Reference.



3 9 2 C  H  A  P  T  E  R    1  9

Using the Visio type library

The Visio type library contains descriptions of the objects, methods,
properties, events, and constants that Visio exposes. You use the Visio
type library to define Visio object types and constants in your pro-
gram. Using Visio object types increases the speed of your program.

The Visio type library and VISCONST.BAS

Earlier versions of Visio did not include a type library, so all constants
were defined in VISCONST.BAS. Both VISCONST.BAS and the Visio type
library contain global constants. When programming with Visio 5.0,
you can set a reference to the Visio type library or include
VISCONST.BAS in your project. To set a reference to the Visio type li-
brary in Visual Basic, choose References from the Tools menu and
select the Visio type library in the Available References list.

If you use VISCONST.BAS instead of the Visio type library, you cannot
use Visio object types—you must use the Object variable type. For
example, you cannot use Dim docsObj as Visio.Documents when de-
fining variables. You must use Dim docsObj as Object.

IMPORTANT  The examples in this book assume that you have a refer-
ence set to the Visio type library.

Using global constants
Both VISCONST.BAS and the Visio type library contain global sym-
bolic constants defined for arguments and return values of properties
and methods. Most arguments to properties and methods are nu-
meric values. Using these constants can make your code easier to
write and to read.

For example, suppose you want to find out what type of window—
drawing, stencil, ShapeSheet, or icon editing—a Window object
represents. The Type property of a Window object returns an inte-
ger—1, 2, 3, or 4—that indicates the window’s type. If you set a
reference to the Visio type library or include VISCONST.BAS in your
project, you can use the constants visDrawing, visStencil, visSheet,
or visIcon instead of 1, 2, 3, or 4 to check the window’s type.

The constants in VISCONST.BAS are grouped by usage. For a list of
constants used by a particular method or property, see that method
or property in the Visio type library or the online Visio Automation
Reference.



P R O G R A M M I N G   V I S I O   W I T H   V I S U A L   B A S I C 393

Using the Visual Basic files provided on your Visio 5.0 CD

The DVS (Developing Visio Solutions) folder on your Visio 5.0 CD
contains the code examples discussed in this chapter and several
Visual Basic files you can use to develop programs that control Visio.
These files are in the \DVS\LIBRARIES\VB folder. You can include these
files in your Visual Basic project or just copy the code you need.

NOTE  In Visual Basic 5.0, a program that contains event sinks must
be set up as an ActiveX EXE project, and its Instancing     property must
be set to MultiUse. The DVS folder on your Visio 5.0 CD contains
two sets of event sink samples: one for Visual Basic 5.0 and one for
Visual Basic 4.0.

Migrating from Visual Basic to VBA

If you are thinking about migrating from Visual Basic to VBA, here
are a few issues to keep in mind.

Who will use your solution and which version of Visio do they use? VBA
programs are not compatible with earlier versions of Visio. If you
open a document created with Visio 4.5 or later in Visio 4.0, Visio
opens the drawing, but the VBA programs are not accessible—there
is no Macro menu. Users won’t be able to run your VBA program.

Visio object types are not compatible with earlier versions of Visio. If
your users are using earlier versions of Visio, don’t use the Visio type
library or Visio object types. To use Visio constants in your program,
include VISCONST.BAS in your project.

Remove CreateObject, GetObject, and vaoGetObject references from

your program. You don’t need these Application object references
when programming in the VBA development environment in Visio.
If you are programming in another application’s VBA development
environment, such as Microsoft Excel, you still need these references
to get or create an instance of Visio, but when programming with
Visio, Visio is already running. The Visio global object represents the
active instance of Visio.

Including files in your project

You can automatically include files such
as VISCONST.BAS or VISREG.BAS in all your
projects by modifying AUTOLOAD.MAK. For
information about modifying AUTOLOAD.MAK,
see your Visual Basic documentation.

Alternatively, you can just insert the
VISCONST.BAS or VISREG.BAS file in a project
by choosing Add File from the File menu.



3 9 4 C  H  A  P  T  E  R    1  9

Transfer code. What components does your code use? Does it use cus-
tom controls that aren’t included in VBA? Does it use VB forms? Find
out if VBA supports the forms and the custom controls. If it does, you
can import the forms from your Visual Basic projects into a VBA
project and add any custom controls. If it doesn’t, you could create a
new user form in VBA and copy and paste between Visual Basic and
VBA project items. Also, remove any methods in your program that
create or get an instance of Visio. These are unnecessary when pro-
gramming in VBA within Visio.

Store your program in a Visio file. VBA programs are stored in Visio
files. If you store your VBA program with a template that opens the
stencils containing the shapes you use in your program, you don’t
have to open the template and stencils in your program—they’re al-
ready open, just as an instance of Visio is already running.



Topics in this chapter

How Visio exposes objects ......................................................................... 396

C++ support in Visio .................................................................................... 397

Handling Visio events in C++ programs ...................................................... 407

Visio libraries (VSLs) ..................................................................................... 410

16-bit development issues

Visio is a 32-bit application that requires
Windows 95 or Windows NT. The C and C++
support files provided with Visio 5.0 evolved
from versions that support both 16-bit and
32-bit development with earlier versions of
Visio. However, these files have been tested
only for 32-bit development with Visio 5.0,
and their behavior in 16-bit environments is
not guaranteed. For more information about
16-bit development issues and Visio, see the
file README.TXT in \DVS\LIBRARIES\C-CPP.

20
Programming
Visio with C++

Any client that supports the OLE Component Object Model (COM)
can access and manipulate Visio objects. Several commercially avail-
able development environments, such as Visual Basic, conceal the
details of COM, which appeals to many developers. But if you are
prepared to work more closely with COM, you can use C or C++ to
develop programs that control Visio.

This chapter discusses how Visio exposes objects to Automation in
terms of COM. It describes some basic support services provided by
Visio that ease the task of developing C++ programs that
control Visio. It then explains how to develop a Visio library (VSL), a
special kind of dynamic-link library that is loaded at run time by
Visio. For details about recompiling existing programs to use the new
support services or about programming Visio with C, see the file
README.TXT in \DVS\LIBRARIES\C-CPP.

NOTE  This chapter assumes that you are familiar with OLE program-
ming concepts, including COM, obtaining pointers to interfaces, and
calling interface functions. It also assumes that you are familiar with
the C++ programming language. For information about OLE, see the
OLE documentation in the Microsoft Platform Software Develop-
ment Kit (SDK). For information about C++, see your C++
documentation.



3 9 6 C  H  A  P  T  E  R    2  0

How Visio exposes objects

The objects Visio exposes are Component Object Model (COM)
objects. The concepts of an interface on an object and a reference to
an interface are fundamental to understanding COM. If you use the
C++ files provided with Visio 5.0 and described later in this chapter,
you won’t need to program at this level. However, it can help to have
a general understanding of what’s happening behind the scenes.

To illustrate an interface on an object and a reference to an interface,
here is a simple example, expressed in pseudocode:

ipAppObj = <reference to an interface on a Visio application object>

ipDocsObj = ipAppObj->Documents() // Get documents collection.

ipDocObj = ipDocsObj->Item(1) // Get first document.

The program state after this code executes is shown in the following
illustration, which uses the common conventions for showing COM
objects. The controlling program has obtained references to inter-
faces on three objects exposed by Visio. The arrows are the references,
the circles are the interfaces, and the boxes inside the Visio instance
are the objects.

A program controlling Visio A COM An instance of Visio
interface

ipDocsObj

ipAppObj

ipDocObj

Document
collection

Application
object

Document object
(in this case, item 1
of the Documents

collection)

The program state after getting a Document object

OLE provides many kinds of interfaces, such as those that support
document linking and embedding or persistent data storage. An OLE
interface pointer refers to data that represents the object that owns
the interface. An interface also refers to an array of functions that
perform the actions defined in that interface for that object. Once
you have a reference to an interface on an object, you can call the
methods defined in that interface for that object.

Methods vs. Visual Basic properties

Note the similarities between the assign-
ments in this example and the object
assignments in Visual Basic. You can ex-
trapolate from this example—given a
reference to an interface on a Document
object, the program can obtain, in like fash-
ion, a reference to an interface on a Page
object, then a Shape object, and so on. The
properties and methods provided by these
objects are exactly the same as those dis-
cussed in earlier chapters of this book.



P R O G R A M M I N G   V I S I O   W I T H   C + + 397

The interfaces that Visio exposes are dual interfaces. In a dual inter-
face, the first entries in the interface are identical to the entries in a
standard IDispatch interface, the principal interface used to imple-
ment Automation. The IDispatch methods are followed by entries
that correspond to the methods and properties exposed by the object.
A dual interface is so called because its methods or properties can be
called either indirectly through IDispatch methods, or directly
through the “dual” methods.

IDispatch functions define a protocol that allows late binding—that
is, binding that occurs at run time—between Automation controllers
and Automation servers. However, if an Automation server provides a
type library and implements dual interfaces (as Visio does), it enables
early binding—that is, binding that occurs at compile time. This typi-
cally results in improved performance on the part of the Automation
controller, because the program makes fewer calls at run time to in-
voke a method. For more information about dual interfaces, see the
OLE documentation in the Microsoft Platform SDK.

C++ support in Visio

The Automation interfaces on Visio objects are defined in VISIO.H,
which is in \DVS\LIBRARIES\C-CPP\VAO_INC. This file contains a stan-
dard OLE interface definition for each Visio object. To control Visio
through Automation from a C++ program, include VISIO.H in your
project source files.

Visio 5.0 also provides services in the form of wrapper classes that
make the job of programming Visio using C++ easier. A wrapper class
is so called because it encapsulates, or “wraps,” the programming in-
volved in certain tasks, such as getting and releasing interface pointers
and working with strings. The basic benefit you’ll gain by using these
classes is that they keep track of AddRef and Release calls for you, us-
ing C++ constructors, destructors, and assignment operators. They
also automatically wrap any arguments or return values with a wrap-
per class when appropriate.

Sample projects

In addition to the files you’ll use in your pro-
gram, the C-CPP folder contains sample
projects that illustrate the use of wrapper
classes and event sinks.

The README.TXT file in this folder gives more
details on the contents of the folder and in-
structions on how to build the sample
projects. You may find it helpful to study
these projects before developing your own
programs.



3 9 8 C  H  A  P  T  E  R    2  0

Using the wrapper classes
To use the wrapper classes, include VISIWRAP.H in your project source
files. This file is provided in the folder \DVS\LIBRARIES\C-CPP\VAO_INC.
If you include VISIWRAP.H, you do not need to include VISIO.H. The
wrapper classes observe the following conventions:

• Wrapper class names are prefixed with “CVisio.” For example, the
wrapper class for a Visio Page object is CVisioPage.

• Properties are accessed through methods that are prefixed with
“get” to read the property or “put” to set the property. For
example, the access methods for the Name property are getName
and putName. (In VISIO.H, the corresponding methods include
an underscore between the prefix and the method name:
get_Name and put_Name.) To find out what these methods do,
search the online Automation Reference for “Name.”

A program that uses the Visio wrapper classes might look like the fol-
lowing example. This program, from the sample GENERIC.CPP,
creates a new document based on SAMPLE.VST, drops two masters,
and connects them. The function vaoGetObjectWrap, defined in
VISIWRAP.H, gets the instance of Visio if one is running and, if not,
runs an instance. For conciseness, error handling has been omitted.

This example also uses the helper classes VBstr and VVariant, which
are defined in HELPERS.H.

• VBstr. A class that simplifies working with BSTRs, which are
strings passed through Automation.

• VVariant. A class that simplifies working with VARIANTs, which
are the Automation counterpart of C++ unions.

The file VISIWRAP.H includes HELPERS.H, so if you’re using the wrap-
per classes you can use the helper classes also. For more information
about the helper classes, see the comments in HELPERS.H.



P R O G R A M M I N G   V I S I O   W I T H   C + + 399

\DVS\LIBRARIES\C-CPP\SAMPLES\GENERIC.CPP

#include "visiwrap.h"

extern “C” int RunDemo(void)

{

HRESULT hr=NOERROR

CVisioApplication app;

CVisioDocuments docs;

CVisioDocument doc;

CVisioPages pages;

CVisioPage page;

CVisioShape shape;

CVisioShape shape1;

CVisioMasters masters;

CVisioMaster master;

CVisioDocument stencil;

CVisioCell cell;

CVisioCell cell1;

...

if (VAO_SUCCESS != vaoGetObjectWrap(app))

goto CU; //Error handling

...

// Add a new document based on "sample.vst" and get the drawing page

hr= app.Documents(docs);

hr= docs.Add(VBstr("sample.vst"), doc);//VBstr is the helper class for type BSTR

hr= doc.Pages(pages);

hr= pages.Item(VVariant(1L), page); //VVariant is the helper class for type VARIANT

// Get the stencil and the first master to drop.

hr= docs.Item(VVariant(“sample.vss”), stencil);

hr= stencil.Masters(masters);

hr= masters.Item(VVariant(“Executive”), master);

hr= page.Drop(master, 6.0, 6.0, shape);

// Get the second master and drop it.

hr= masters.Item(VVariant(“Position”), master);

hr= page.Drop(master, 3.0, 3.0, shape1);

// Connect the two shapes on the drawing page

hr= shape.Cells(VBstr(“Connections.X4”), cell);

hr= shape1.Cells(VBstr(“Controls.X1”), cell1);

hr= cell1.GlueTo(cell);

...

}



4 0 0 C  H  A  P  T  E  R    2  0

The interfaces behind the wrappers
The file VISIO.H defines the objects exposed by Visio in standard
OLE interface declaration syntax. The wrapper classes defined
in VISIWRAP.H call the methods of these interfaces. For example,
the CVisioApplication wrapper class is declared in VISIWRAP.H as
shown here.

CVisioApplication in \DVS\LIBRARIES\C-CPP\VAO_INC\VISIWRAP.H

class FAR CVisioApplication : public CVisioUnknown

{

VW_PUBLIC:

CVisioApplication() : CVisioUnknown() { }

CVisioApplication(const CVisioApplication& other) : CVisioUnknown(other) { }

CVisioApplication(const ::IVApplication FAR * other) : CVisioUnknown((LPUNKNOWN)other) { }

const CVisioApplication FAR & operator=(const CVisioApplication FAR &other)

{

if (&other != this)

CopyIP(other.m_pUnk);

return *this;

}

const CVisioApplication FAR & operator=(const ::IVApplication FAR * other)

{

if ((LPUNKNOWN)other != m_pUnk)

CopyIP((LPUNKNOWN)other);

return *this;

}

virtual ~CVisioApplication() { }

::IVApplication FAR * GetIP() const { return (::IVApplication FAR *)m_pUnk; }

operator ::IVApplication FAR * () { return (::IVApplication FAR *)m_pUnk; }

VW_PUBLIC:

HRESULT ActiveDocument(CVisioDocument FAR &rWrap);

HRESULT ActivePage(CVisioPage FAR &rWrap);

HRESULT ActiveWindow(CVisioWindow FAR &rWrap);

HRESULT Application(CVisioApplication FAR &rWrap);

HRESULT Documents(CVisioDocuments FAR &rWrap);

...

};



P R O G R A M M I N G   V I S I O   W I T H   C + + 401

The corresponding Application object interface is declared in VISIO.H
as follows.

IVApplication in \DVS\LIBRARIES\C-CPP\VAO_INC\VISIWRAP.H

#define INTERFACE IVApplication

DECLARE_INTERFACE_(IVApplication, IDispatch)

{

BEGIN_INTERFACE

#ifndef NO_BASEINTERFACE_FUNCS

/* IUnknown methods */

STDMETHOD(QueryInterface)(THIS_ REFIID riid, LPVOID FAR* ppvObj) PURE;

STDMETHOD_(ULONG, AddRef)(THIS) PURE;

STDMETHOD_(ULONG, Release)(THIS) PURE;

/* IDispatch methods */

STDMETHOD(GetTypeInfoCount)(THIS_ UINT FAR* pctinfo) PURE;

STDMETHOD(GetTypeInfo)(

THIS_

UINT itinfo,

LCID lcid,

ITypeInfo FAR* FAR* pptinfo) PURE;

STDMETHOD(GetIDsOfNames)(

THIS_

REFIID riid,

OLECHAR FAR* FAR* rgszNames,

UINT cNames,

LCID lcid,

DISPID FAR* rgdispid) PURE;

STDMETHOD(Invoke)(

THIS_

DISPID dispidMember,

REFIID riid,

LCID lcid,

WORD wFlags,

DISPPARAMS FAR* pdispparams,

VARIANT FAR* pvarResult,

EXCEPINFO FAR* pexcepinfo,

UINT FAR* puArgErr) PURE;

#endif

(Code sample continued on next page)



4 0 2 C  H  A  P  T  E  R    2  0

IVApplication (continued)

/* IVApplication methods */

STDMETHOD(get_ActiveDocument)(THIS_ IVDocument FAR* FAR* lpdispRet) PURE;

STDMETHOD(get_ActivePage)(THIS_ IVPage FAR* FAR* lpdispRet) PURE;

STDMETHOD(get_ActiveWindow)(THIS_ IVWindow FAR* FAR* lpdispRet) PURE;

STDMETHOD(get_Application)(THIS_ IVApplication FAR* FAR* lpdispRet) PURE;

STDMETHOD(get_Documents)(THIS_ IVDocuments FAR* FAR* lpdispRet) PURE;

...

};

Every object exposed by Visio has a similar declaration in VISIO.H.
The various macros in this declaration are common OLE fare that al-
low VISIO.H to be included in either C or C++ source files. If you
include VISIO.H, you’ll also need to include WINDOWS.H and OLE2.H.

The first seven methods in this and every Visio interface are
QueryInterface, AddRef, and Release (for IUnknown), followed by
GetTypeInfoCount, GetTypeInfo, GetIDsOfNames and Invoke (for
IDispatch). For details about these standard OLE methods, see your
OLE documentation. The remaining methods are those that are ex-
posed by the Visio Application object. These methods correspond to
the methods and properties described elsewhere in this book for use
with Visual Basic programs.

To learn more about a method, look in the online Automation refer-
ence. For example, to find more about the get_ActiveDocument
method declared above, search the online Automation reference for
“ActiveDocument.”

Obtaining a Visio Application object
The sample program in GENERIC.CPP (shown earlier in this chapter)
begins with the following code:

CVisioApplication app;

if (VAO_SUCCESS != vaoGetObjectWrap(app))

goto CU; //Error handling

This pebble starts the avalanche. To do anything with Visio you need
an Application object, which is what vaoGetObjectWrap gets.



P R O G R A M M I N G   V I S I O   W I T H   C + + 403

vaoGetObjectWrap calls the vaoGetObject function, which is de-
clared in IVISREG.H and implemented in IVISREG.CPP. If you’re not
using the wrapper classes, you can call vaoGetObject directly. Look at
the source code to see what vaoGetObject actually does.

The services defined in IVISREG.H for working with an instance of
Visio are equivalent to those provided by the VISREG.BAS file supplied
for use with Visual Basic. In particular, this file provides the where-
withal to launch a new Visio instance or establish an Application
object for the active instance of Visio.

Values returned by Visio methods
Every method declared in VISIO.H is declared as a STDMETHOD. This
means it returns an HRESULT indicating whether the method ex-
ecuted successfully. The HRESULT returned by a method in VISIO.H is
passed along by the equivalent method of the corresponding wrapper
class defined in VISIWRAP.H.

If a method succeeds, it returns NOERROR. A common practice is to
check a method’s result by using SUCCEEDED(hResult). The sample
program does this in a macro called check_valid shown later in this
section.

Many methods also produce an output value independently of the
HRESULT returned by every method. For example, the
ActiveDocument method of the CVisioApplication wrapper class
produces a reference to a Document object. By convention, a
method’s output value is written to the method’s last argument. Thus
the last argument passed to ActiveDocument is a reference to a
CVisioDocument object where the method can return a reference to
the Document object.

Object references. Many methods return an object reference as their
output value. This value is really an OLE interface pointer, which, like
any interface pointer, must eventually be released.

• If you’re using wrapper classes, the value returned is an object of
another wrapper class—such as the CVisioDocument mentioned
above—in which the interface pointer is packaged. When the
object goes out of scope, the Visio interface pointer it holds is
automatically released.



4 0 4 C  H  A  P  T  E  R    2  0

• If you’re not using wrapper classes, the interface pointer is held
directly by your program, which must explicitly release the
pointer at the appropriate time.

If a method that returns an object reference fails, the output value
again depends on whether you’re using wrapper classes.

• If you’re using wrapper classes, you’ll still get an object of the
appropriate wrapper class, but the interface pointer held by the
object is NULL. Calling the IsSet function on that object will
return FALSE.

• If you’re not using wrapper classes, the interface pointer is NULL,
so you can simply check for that.

Even if the method succeeds, you may still need to check the output
parameter. For example, if ActiveDocument is called when no docu-
ments are open, it returns an HRESULT of success and a NULL
interface pointer (wrapped or not). The reasoning here is that an er-
ror did not occur—having no documents open is a perfectly valid
state that the caller should account for. The various Active* methods
behave in this manner, and you should verify that their output values
are not NULL before proceeding. The various Item and Add meth-
ods, however, always return a non-NULL reference if they succeed.

The check_valid macro, defined in GENERIC.CPP, checks both possi-
bilities. A function using check_valid must provide a CU label where
it performs cleanup tasks.

#define check_valid(hr, obj) \

if(!SUCCEEDED(hr) || !((obj).IsSet())) \

goto CU;

Strings. Several methods return a string to the caller. The Shape
object’s Name method (getName of CVisioShape or get_Name of
IVShape) is an example. All strings passed to or returned by the Visio
methods are of type BSTR, which consists of 16-bit (wide) characters
in Win32 programs. Visio allocates the memory for the strings it re-
turns, and the caller is responsible for freeing the memory.



P R O G R A M M I N G   V I S I O   W I T H   C + + 405

The wrapper classes defined in VISIWRAP.H take care of freeing
memory for strings. If you do not use the wrapper classes, however,
make sure that you call SysFreeString to free any string returned by
Visio.

Arguments passed to Visio methods
Passing arguments to Visio methods is straightforward. Integer argu-
ments are declared as short or long, depending on whether they are
2-byte or 4-byte values. Floating-point arguments are declared as
double. Boolean values are passed as short integers. Arguments that
are object pointers, BSTRs, or VARIANTs merit further discussion.

Object pointers. Some methods take object pointers, and some require
a pointer to a specific type of Visio object. The Cell object’s GlueTo
method, for example, takes an argument that must refer to another
Cell object.

Other methods that take object pointers are more lenient. For ex-
ample, the Page object’s Drop method takes a reference to the object
to be dropped, because you might want to drop a master on a page, or
you might want to drop a shape on a page.

The simplest way to pass an object pointer to a method is to pass a
reference to an object of the appropriate wrapper class. For example,
you would pass a reference to a CVisioCell as an argument to the
GlueTo method.

The interfaces defined in VISIO.H declare object pointers as the corre-
sponding interfaces. For example, VISIO.H declares GlueTo as taking a
pointer to an IVCell. Because the Drop method is not restricted to a
particular object, VISIO.H declares Drop to take an IUnknown, the
OLE way to say that Drop takes a reference to any object. Internally,
the Drop method determines what to drop by querying the object
passed to it for an IDataObject interface. The interface you pass to
Drop does not necessarily have to be an interface on a Visio object.



4 0 6 C  H  A  P  T  E  R    2  0

Strings. Any string passed to Visio must be a BSTR. The helper class
VBstr, defined in HELPERS.H, is a convenient way to pass strings to
Visio. VBstr takes care of allocating memory for the string when it is
created, and frees the memory when the VBstr is destroyed. If you
don’t use VBstr, make sure that you call SysFreeString to free the
memory you have allocated for strings.

For example, the following statement uses a VBstr to pass a cell name
to the Cells method of a CVisioShape object. In this statement, cell is
a variable of type CVisioCell:

hr = shape.Cells(VBstr("Connections.X4"), cell);

VARIANTs. Some Visio methods take arguments that aren’t con-
strained to a single type. For example, if you pass an integer i to the
Item method of a Documents collection, it returns a reference to the
ith document in the collection. If you pass a string that is a document
name to the same method, however, it returns a reference to a docu-
ment of that name (assuming that the document exists).

OLE defines a data structure known as a VARIANT for passing such
arguments. The helper class VVariant, defined in HELPERS.H, is a
convenient way of passing VARIANTs to Visio. For example, compare
the following two statements:

hr = pages.Item(VVariant(1L), page);

hr = masters.Item(VVariant("Position"), master);

The first statement passes 1 (an integer) to the Item method of a
Pages collection. The second statement passes “Position” (a string) to
the Item method of a Masters collection. In these statements, page
and master are variables of type CVisioPage and CVisioMaster,
respectively.



P R O G R A M M I N G   V I S I O   W I T H   C + + 407

Handling Visio events in C++ programs

One way to handle Visio events from a C++ program is to use Event
objects. An Event object pairs an event with an action—either to run
an add-on or to notify another object, called a sink object, that the
event has occurred. For a discussion of how Event objects work and
details about implementing them in Visual Basic programs, see “Han-
dling events with Event objects” in Chapter 15, “Handling events in
Visio.”

Implementing a sink object
You implement handling of Visio events in a C++ program in much
the same way as in a Visual Basic program, with these exceptions:

• The sink object in your C++ program must be a COM object that
exposes the IDispatch interface.

• The IDispatch interface must supply a method called
VisEventProc that has the following signature:

STDMETHOD(VisEventProc) (

WORD wEvent, //Event code of the event that is firing

IUnknown FAR* ipSource, //Pointer to IUnknown interface on the object firing the event

DWORD dwEventID, //The ID of the event that is firing

DWORD dwSeq, //The sequence number of the event

IUnknown FAR* ipSubject,//Pointer to IUnknown interface on the subject of the event

VARIANTvExtraInfo //Additional information (usually none)

);

When you call AddAdvise to create the Event object, you pass a
pointer to the IUnknown or IDispatch interface on the sink object.



4 0 8 C  H  A  P  T  E  R    2  0

Using CVisioAddonSink
Instead of implementing your own sink object, you can use the
CVisioAddonSink class provided with Visio 5.0. This class is declared
in the file ADDSINK.H in \DVS\LIBRARIES\C-CPP\VAO_INC.

To use CVisioAddonSink:

1. Include ADDSINK.H in your project source files. If you’re using
the wrapper classes defined in VISIWRAP.H, skip this step.

2. Write a callback function to receive the event notifications sent to
the sink object.

3. Call CoCreateAddonSink with a pointer to your callback
function and the address of an IUnknown. CoCreateAddonSink
creates an instance of a sink object that knows about your
callback function, and writes a pointer to an IUnknown interface
on the sink object to the address you supplied.

4. Get a reference to the EventList collection of the Visio object
from which you want to receive notifications.

5. Call the AddAdvise method of the EventList collection obtained
in step 4 with the IUnknown interface obtained in step 3 and the
event code of the Visio event you’re interested in. When the event
occurs, Visio will call your callback function.

6. When you’re finished using the sink object, release it.

The sample program GENERIC.CPP uses CVisioAddonSink to handle
two events: DocumentCreated and ShapeAdded. The program de-
clares a callback function for each event. The signature of the callback
function must conform to VISEVENTPROC, which is defined in
ADDSINK.H. The following example shows one of the declarations.
For the implementation of this function, see GENERIC.CPP.

HRESULT STDMETHODCALLTYPE ReceiveNotifyFromVisio (

IUnknown FAR* ipSink,

WORD wEvent,

IUnknown FAR* ipSource,

DWORD nEventID,

DWORD dwEventSeq,

IUnknown FAR* ipSubject,

VARIANT eventExtra);



P R O G R A M M I N G   V I S I O   W I T H   C + + 409

To create the sink object, the program gets the EventList collection of
the Application object (app), calls CoCreateAddonSink to create the
sink object, and calls AddAdvise on the EventList object to create the
Event object in Visio. The program sets a flag, bFirstTime, to ensure
that the Event objects are created only once while the program is run-
ning. The ID of the Event object is stored in the static variable
stc_nEventID for later reference. The AddAdvise call creates a second
reference on the sink object, so the program can release pSink.

static long stc_nEventID = visEvtIDInval;

IUnknown FAR* pSink = NULL;

IUnknown FAR* pAnotherSink = NULL;

static BOOL bFirstTime = TRUE;

CVisioApplication app;

CVisioEventList eList;

CVisioEvent event;

...

if (bFirstTime && (SUCCEEDED(app.EventList(eList))))

{

bFirstTime= FALSE;

if (SUCCEEDED(CoCreateAddonSink(ReceiveNotifyFromVisio, &pSink)))

{

if (SUCCEEDED(eList.AddAdvise(visEvtCodeDocCreate,

VVariant(pSink), VBstr(""), VBstr(""), event)))

{

event.ID(&stc_nEventID);

}

// If AddAdvise succeeded, Visio now holds a reference to the sink object

// via the event object, and pSink can be released.

pSink->Release();

pSink= NULL;

}

...

}

Event objects created with AddAdvise persist until the Event object is
deleted, all references to the source object are released, or the instance
of Visio is closed. If your program needs to perform cleanup tasks be-
fore Visio is closed, handle the BeforeQuit event.



4 1 0 C  H  A  P  T  E  R    2  0

Visio libraries (VSLs)

A Visio library (VSL) is a special dynamic-link library (DLL) that is
loaded by Visio at run time and that can implement one or more
Visio add-ons (programs that use Automation to control Visio).

An add-on implemented by a Visio library can interact with Visio ob-
jects in exactly the same fashion as an add-on implemented by an
executable (.EXE) file or code in a document’s VBA project, and a user
can do exactly the same things. Add-ons implemented in a VSL have
performance and integration advantages over those implemented in
executable programs—for example, because a VSL runs in the same
process as Visio. However, you cannot run a Visio library from
Windows Explorer as you can an executable program.

Visio recognizes as a Visio library any file with a .VSL extension in the
Add-ons or Startup paths. Installing a VSL is simply a matter of copy-
ing the file to one of the directories specified in the Visio Add-ons or
Startup paths. The next time you run Visio, the add-ons implemented
by that VSL are available to Visio.

Advantages of Visio libraries
All else being equal, a Visio library runs faster than an executable pro-
gram. Because a Visio library is a DLL, it is loaded into the process
space of the Visio instance that is using the library. Calls from a Visio
library to Visio do not cross a process boundary, as is the case when
an executable program calls Visio.

In addition, because a Visio library runs in the same process as Visio,
it is much easier for it to open a dialog box that is modal with respect
to the Visio process. When two executable files (an add-on and Visio)
are running, it is difficult for one of them to display a dialog box that
is modal with respect to the other. An add-on executable program
can display a dialog box, but the user can click the Visio window and
change the Visio state while the dialog box is open.

Files for developing VSLs

The files you’ll need to develop Visio librar-
ies are in \DVS\LIBRARIES\C-CPP. This folder
also contains source and .MAK files for a
simple but functional Visio library. See
README.TXT in the C-CPP folder for details.

In addition, the file MYADDON.CPP in
\DVS\LIBRARIES\C-CPP\SAMPLES\MYADDON
contains a shell for writing your own VSL.



P R O G R A M M I N G   V I S I O   W I T H   C + + 411

The architecture of a Visio library
A VSL is nothing more than a standard dynamic-link library that ex-
ports an entry point with the prescribed name VisioLibMain.

Visio loads a VSL using LoadLibrary and frees it using FreeLibrary.
Unless your VSL is installed in a Visio Startup folder, your VSL should
not make assumptions about when it will get loaded. Visio loads non-
startup VSLs only when it needs to do so. If an instance of Visio does
load a VSL, it does not call FreeLibrary on the VSL until the instance
shuts down.

The file VDLLMAIN.C provides a default implementation for DllMain,
which is the standard DLL entry point that Windows calls when it
loads and unloads a DLL. The file VAO.C implements several other
functions that you may find useful; some of these are mentioned in
the paragraphs that follow.

Once Visio has loaded a VSL, it makes occasional calls to the VSL’s
VisioLibMain procedure. One of the arguments Visio passes to
VisioLibMain is a message code that tells the VSL why it is being
called. All messages that Visio sends are defined in VAO.H.

The prescribed prototype for VisioLibMain can be found in VAO.H:

typedef WORD VAORC, FAR* LPVAORC; // Visio add-on return code.

typedef WORD VAOMSG, FAR* LPVAOMSG; // Visio add-on message code.

#if defined(_WIN32) // Visio add-on call back proc.

#define VAOCB __cdecl

#else

#define VAOCB LOADDS PASCAL FAR

#endif

// The prototype of VisioLibMain should conform to VAOFUNC.

typedef VAORC (VAOCB VAOFUNC) (VAOMSG,WORD,LPVOID);



4 1 2 C  H  A  P  T  E  R    2  0

A typical VisioLibMain will thus look something like:

// Make sure your DLL exports VisioLibMain.

#include "vao.h"

VAORC VAOCB VisioLibMain (VAOMSG wMsg, WORD wParam, LPVOID lpParam)

{

VAORC result = VAORC_SUCCESS;

switch (wMsg)

{

case V2LMSG_ENUMADDONS:

// Code to register this VSL’s add-ons goes here.

break;

case V2LMSG_RUN:

// Code to run add-on with ordinal wParam goes here.

break;

default:

// Trigger generic response to wMsg.

// VAOUtil_DefVisMainProc and VLIBUTL_hModule

// are helper procedures implemented in vao.c.

result = VAOUtil_DefVisMainProc(wMsg, wParam, lpParam, VLIBUTL_hModule());

break;

};

return result;

}

This VisioLibMain specifically handles the V2LMSG_RUN and
V2LMSG_ENUMADDONS messages. Other messages are deferred
to VAOUtil_DefVisMainProc, a function that implements generic
message responses. VLIBUTL_hModule evaluates to the module
handle of the VSL.

Declaring and registering add-ons
When Visio sends the V2LMSG_ENUMADDONS message to a VSL’s
VisioLibMain, it is asking for descriptions of the add-ons imple-
mented by the VSL.

The file LIB.C implements a sample VSL. In it you can see source code
demonstrating how a VSL registers add-ons. Two aspects are involved:
First, LIB.C defines a data structure describing its add-ons. Second, in
response to V2LMSG_ENUMADDONS, it passes this data structure
to Visio.



P R O G R A M M I N G   V I S I O   W I T H   C + + 413

LIB.C implements one add-on. Near the top of the file is the following
code:

#define DEMO_ADDON_ORDINAL 1

PRIVATE VAOREGSTRUCT stc_myAddons[] =

{

{

DEMO_ADDON_ORDINAL, // Ordinal of this add-on

VAO_AOATTS_ISACTION, // This add-on does things to Visio.

VAO_ENABLEALWAYS, // This add-on is always enabled.

0, // Invoke on mask.

0, // Reserved for future use.

"VSL Automation Demo", // The name of this add-on.

},

};

VAOREGSTRUCT is declared in VAO.H. You’ll find comments and
declarations there that give more information on the various fields in
the structure.

When Visio tells a VSL to run an add-on, it identifies which add-on by
specifying the add-on’s ordinal, a unique value that identifies the
add-on within the file. The stc_myAddons array declares one add-on
whose ordinal is 1 (DEMO_ADDON_ORDINAL). If LIB.C imple-
mented two add-ons instead of one, stc_myAddons would have two
entries instead of one and each entry would designate a unique ordinal.

The declared add-on is presented in the Visio user interface as “VSL
Automation Demo.” If you intend to localize your add-on, you
wouldn’t declare its name in the code as is shown here. Rather, you’d
read the name from a string resource and dynamically initialize the
VAOREGSTRUCT.

VAO_ENABLEALWAYS tells Visio this add-on should be considered
enabled at all times. Other enabling policies can be declared. There
are many add-ons, for example, that it makes sense to run only when
a document is open. Such add-ons can declare an enabling policy of
VAO_NEEDSDOC. Visio makes such add-ons unavailable when no
documents are open. When such an add-on is run, it can assert that a
document is open. Several static enabling policies similar to
VAO_NEEDSDOC are declared in VAO.H.



4 1 4 C  H  A  P  T  E  R    2  0

VAO.H also contains a policy called VAO_ENABLEDYNAMIC. When
Visio wants to determine whether the add-on is enabled, it sends
V2LMSG_ISAOENABLED to a dynamically enabled add-on. The
add-on can claim to be enabled or disabled based on its own criteria.

The last aspect of VAOREGSTRUCT involves making an add-on run
automatically when an instance of Visio launches. To make an add-on
implemented by an executable program run on startup, you simply
place the executable file in one of the directories specified by the Visio
Startup paths setting.

For add-ons implemented in a VSL, those to be run on startup must
also specify VAO_INVOKE_LAUNCH in the invokeOnMask field of
their VAOREGSTRUCT. This constant allows a single .VSL file to
implement some add-ons that run automatically when Visio
launches, and some that don’t.

By itself, VAOREGSTRUCT is just a data structure whose
mere existence doesn’t tell Visio anything. When Visio sends
V2LMSG_ENUMADDONS to a VSL, the library should respond by
passing Visio a pointer to the array of VAOREGSTRUCTs discussed
earlier, so the data they contain is available to Visio. To do this, LIB.C
makes use of a utility implemented in VAO.C. The code is as follows:

result = VAOUtil_RegisterAddons(

((LPVAOV2LSTRUCT)lpParam)->wSessID,

stc_myAddons,

sizeof(stc_myAddons)/sizeof(VAOREGSTRUCT));

For details about what this code does, look at the source in VAO.C.

Running an add-on
Visio sends V2LMSG_RUN to a VSL when the VSL is to run one of its
add-ons. The ordinal of the add-on to run is passed in wParam.

Visio sends V2LMSG_RUN only if it has determined that the desig-
nated add-on is enabled, according to the enabling policy declared in
the add-on’s registration structure. If the add-on’s enabling policy is
VAO_ENABLEDYNAMIC, the VSL will already have responded with
VAORC_L2V_ENABLED to the V2LMSG_ISAOENABLED message
it received from Visio.



P R O G R A M M I N G   V I S I O   W I T H   C + + 415

In addition to the ordinal of the add-on to run, Visio passes a pointer
to a VAOV2LSTRUCT with the V2LMSG_RUN message. From
VAO.H:

VAO_EMBEDDABLE_STRUCT

{

HINSTANCE hVisInst; // Handle of running Visio instance.

LPVAOFUNC lpfunc; // Callback address in Visio.

WORD wSessID; // ID of session.

LPVOID lpArgs; // Reserved for future use.

LPSTR lpCmdLineArgs; // Command line arguments.

} VAOV2LSTRUCT, FAR* LPVAOV2LSTRUCT;

This structure gives the instance handle of the Visio instance sending
the message, which is sometimes useful. (lpfunc and lpArgs are used
by other functions in VAO.C). In lpCmdLineArgs, Visio passes an argu-
ment string to the add-on. This is the same string Visio would pass to
an analogous add-on implemented as an executable program.

You’ll sometimes be interested in wSessID, which is the ID Visio has
assigned to the “session” it associated with the V2LMSG_RUN it just
sent. For example, you might use wSessID if your add-on initiates a
modeless activity.

Most add-ons will perform a modal action in response to
V2LMSG_RUN: They receive the message, do something, then return
control to Visio. Unless the add-on says otherwise, Visio considers the
session finished when it regains control from the add-on.

Pseudocode for this typical case would be:

case V2LMSG_RUN:

wParam is ordinal of add-on to run.

Execute code to do whatever it is the add-on with ordinal wParam does.

This will probably involve instantiating Visio objects and invoking methods and

properties of those objects. You can use the C++ support services discussed in the

previous section just as if this code were in an .EXE file.

if (operation was successful)

return VAORC_SUCCESS;

else

return VAORC_XXX; // See vao.h.



4 1 6 C  H  A  P  T  E  R    2  0

Sometimes, in response to V2LMSG_RUN, an add-on may initiate an
activity that doesn’t terminate when the add-on returns control to
Visio. Such activities are called modeless. An add-on may, for example,
open a window that will stay open indefinitely.

If your add-on implements a modeless activity, it should remember
the session ID passed with V2LMSG_RUN. Pseudocode for such an
add-on would be:

case V2LMSG_RUN:

wParam is ordinal of add-on to run.

Execute code to initiate modeless activity.

For example, open a window and stash its handle.

if (operation was successful)

{

stash lParam->wSessID where it can be looked up later.

return VAORC_L2V_MODELESS;

}

else

return VAORC_XXX; // See vao.h.

Note the return value of VAORC_L2V_MODELESS. This tells Visio
the session still persists, even though the VSL has completed handling
the V2LMSG_RUN message.

A modeless session initiated in this fashion persists until either the
VSL ends the session or the Visio instance associated with the session
terminates.

If the VSL ends the session (for example, perhaps the window it
opened has been closed), it does so with this function call:

VAOUtil_SendEndSession(wSessID);// wSessID: ID of

// terminating session.

When Visio terminates, it sends V2LMSG_KILLSESSION to all
extant sessions. With V2LMSG_KILLSESSION, Visio passes a
VAOV2LSTRUCT whose wSessID field identifies the ID of the session
to terminate. The VSL should respond by terminating and cleaning up
after the identified session.



PART   I V

Appendixes





Topics in this appendix

About arcs ................................................................................................... 420

Working with splines .................................................................................. 424

Appendix A
Arcs and
splines in Visio

This appendix provides technical details about circular and elliptical
arcs in Visio. It also discusses how Visio represents splines, including
how to create a spline by entering control points and spline knots in
the ShapeSheet window.



4 2 0 A  P  P  E  N  D  I  X    A

About arcs

A circular arc is a portion of a circle. An elliptical arc is a portion of an
ellipse. An elliptical arc may appear to be circular, because a circle is
simply a special case of an ellipse. The Geometry section shows the
difference: A circular arc is always defined by an ArcTo row, and an el-
liptical arc is defined by an EllipticalArcTo row.

Circular arcs
In a circular arc, the magnitude of the bow is the distance from the
midpoint of the chord to the midpoint of the arc, as the following fig-
ure shows. The bow’s value is positive if the arc is drawn in the
counterclockwise direction; otherwise, it is negative. A selected arc
has a control point at the arc’s midpoint, which is always located
along the perpendicular bisector of the chord. If you try to move the
control point with the pencil tool, the point moves freely, but it al-
ways snaps back to a position along the perpendicular bisector.

When you resize a circular arc, you change the radius of the circle of
which the arc is a portion. The arc may flatten or bulge—appropriate
resizing behavior for a circle, but perhaps not the expected behavior
for your shapes. For example, resizing a full circle in one direction
turns it into an ellipse. If you want an arc that resizes proportionately,
use an elliptical arc.

A circular arc

To create a circular arc:

1. Select a shape, open its ShapeSheet window, then select a LineTo
or EllipticalArcTo row in the Geometry section.

2. From the Edit menu, choose Change Row Type, check ArcTo,
then click OK.

Chord Control point

Bow



A R C S   A N D   S P L I N E S   I N   V I S I O 421

The following table shows what the cells of an ArcTo row represent.

Circular arc representation in the Geometry section

Row Cell Value

The row that precedes the ArcTo row* X The x-coordinate of the begin point

Y The y-coordinate of the begin point

ArcTo X The x-coordinate of the end point

Y The y-coordinate of the end point

A Size of the arc’s bow

* The begin point of the arc is determined by the X and Y cells of the previous row in the Geometry section.

Elliptical arcs
The arcs you draw with the arc tool are always a quarter of an ellipse,
and those drawn with the pencil tool are a portion of a circle, but
both are represented in a Geometry section as elliptical arcs.

When stretched, an elliptical arc’s eccentricity changes in proportion
to the stretching to maintain a smooth curve. Eccentricity controls
how asymmetrical the arc appears. In most cases, you’ll probably
want to use an elliptical arc in your shapes rather than a circular arc,
whose resizing behavior is constrained by the fact that it must remain
circular.

To create an elliptical arc, do one of the following:

• Draw an arc using the pencil or arc tool.

• In the ShapeSheet window, change the row type of a LineTo or an
ArcTo row to an EllipticalArcTo row.

• On the drawing page, use the pencil tool to drag the control point
of a straight line. This transforms the line into an elliptical arc.

An elliptical arc’s geometry is described in an EllipticalArcTo row, as
the following table shows.



4 2 2 A  P  P  E  N  D  I  X    A

Elliptical arc representation in the Geometry section

Row Cell Value

The row that precedes EllipticalArcTo* X The x-coordinate of the begin point

Y The y-coordinate of the begin point

EllipticalArcTo X The x-position of the end point

Y The y-position of the end point

A The x-position of the control point

B The y-position of the control point

C Angle of the arc

D Eccentricity of the arc

* The elliptical arc’s begin point is determined by the X and Y cells of the previous row in the Geometry section.

You can move the control point of an elliptical arc to change the arc’s
eccentricity. An eccentricity of 1 represents a circular arc, and a value
greater or less than 1 represents an arc with more or less eccentricity.
For example, in an ellipse that is 2 inches wide and 1 inch tall, each el-
liptical arc has an eccentricity of 2. In an ellipse that is 1 inch wide
and 2 inches tall, each elliptical arc has an eccentricity of 1/2.

To change an elliptical arc’s eccentricity:

• Select the pencil tool, and then press Ctrl as you drag the control
point to display the eccentricity handles, which you can stretch
and rotate.

When you move an arc’s eccentricity handles, Visio generates formu-
las in the C and D cells of the EllipticalArcTo row to record the
current orientation and shape of the elliptical arc. If a shape with el-
liptical arcs is stretched, Visio changes the eccentricity and angle of
the arcs if necessary so that the arcs resize consistently with the rest of
the shape.

Useful arc formulas
You can control the resizing behavior of circular arcs using
ShapeSheet formulas that calculate the bow and radius.

To find the bow when the arc’s radius and angle are known. If you
know the radius of an arc and the angle that an ArcTo will subtend,
you can calculate the bow with the following general equation:

|Bow| = radius * (1 - COS(angle/2))



A R C S   A N D   S P L I N E S   I N   V I S I O 423

If the bow is zero, the arc is a straight line. You can use this equation
for any shape, open or closed, to create rounded corners that span a
set angle, as shown in the following figure. The advantage of using
circular arcs is that the corners resize smoothly. For example, if you
know that the radius is 2 inches and the angle is 45 degrees, in an
ArcTo row of the Geometry section, you would enter this formula:

Geometryn.An = 2 in. * (1 - COS(45 deg. /2))

Using a circular arc segment for a rounded corner

In a shape such as a rectangle where the value of angle won’t change
(it’s always 90 degrees), you can reduce part of the formula to a con-
stant. If angle is always 90 degrees, (1–COS(angle/2)) = 0.2929. So
you can enter the formula as:

Geometryn.An = radius * 0.2929

Using this constant may speed up processing, but it limits flexibility if
you later decide that the angle won’t always be 90 degrees. For details
about creating rounded corners, see “Creating curved shapes that
resize smoothly” in Chapter 3, “Controlling shape size and position.”

To find the radius when the bow is known. If you know the bow of an
arc, you can calculate its radius. To do this, find the magnitude of the
chord—the distance between the arc’s begin point and end point. In
the following formula, X1, Y1 represent the arc’s begin point and X2,
Y2 represent the arc’s end point. The length of the chord, then, is:

Chord length = SQRT( (Y2 – Y1) ^2 + (X2 - X1)^2 )

And the radius is:

Radius = (4 * Bow2 + Chord2) / 8Bow

90° angle

Radius



4 2 4 A  P  P  E  N  D  I  X    A

Working with splines

Freeform curves are represented internally as B-splines. (Bézier
curves are a special case of a spline.) To create a spline on the drawing
page, use the freeform tool. To adjust the spline, drag the handles that
appear when you select the spline with the freeform or pencil tool.

You don’t need to know any of the technical details to draw and
modify a spline with the mouse. However, if you want to create a
spline in Visio based on a specific set of control points and knots, you
may prefer to work in the ShapeSheet window. This section describes
how to create a spline in the ShapeSheet window by drawing with the
line tool, then converting that shape’s Geometry rows to spline rows
and adding degree and knot values to the appropriate cells.

To create a spline from a program, you work with the sections, rows,
and cells in the spline, using the rows and cell formulas described be-
low. For details about adding rows and changing row types, see
“Modifying a shape’s sections and rows” in Chapter 14, “Working
with drawings and shapes.” For constants and cell names to use when
working with spline rows from a program, see Appendix B,
“ShapeSheet sections, cell references, and index constants.”

Splines: the basics
If you’re unfamiliar with splines, you may want to consult a standard
college textbook on curve and surface geometry or a comparable
textbook on computer-aided design. Until you do, here’s a brief in-
troduction.

Think of a spline as a thin, flexible ruler whose marks may be un-
evenly spaced. The marks are called knots, and a knot may be repeated
more than once. The multiplicity of a knot is the number of times it is
repeated.

1.0 2.2 4.0 4.5 6.5 7.5 8.06.5

Knots on a spline

The spline’s degree is a positive integer (between 1 and 9 in Visio) that
is the degree of the polynomial equations used to calculate the pieces
of the spline.



A R C S   A N D   S P L I N E S   I N   V I S I O 425

The control points of the spline influence its curvature. Each control
point is located at some distance from the visible curve of the spline;
taken together, all of a spline’s control points are sometimes called the
spline’s control polygon. Each control point has a domain of influence
of degree+2 consecutive knots. For example, if a spline has a degree
of 2, each control point has a domain of influence of four consecutive
knots on the spline. The control point influences the part of the
spline between the first and last knot of its domain.

1.0 2.2 4.0 4.5 6.5 7.5 8.06.5

Control points and their domains of influence on a spline with a degree of 2

The visible curve of the spline is “attracted” to each control point,
which exerts the strongest pull at about the middle of its domain of
influence. A control point has no effect outside its domain of influ-
ence, but the domains of adjacent control points may overlap, so
every point on the curve is affected by degree+2 control points. The
degree of a spline, the number of knots it has, and the locations of its
control points relative to each other all influence the appearance of
the spline on the drawing page.

About periodic and nonperiodic splines
A spline can be periodic or nonperiodic. A nonperiodic spline has be-
ginning and ending points, and it can be open or closed (that is, its
beginning and ending points can meet). A periodic spline is a closed,
seamless shape that has no beginning or ending point.

Periodic spline Open nonperiodic spline Closed nonperiodic spline



4 2 6 A  P  P  E  N  D  I  X    A

By mathematical convention, a nonperiodic spline has degree+1
knots of the same multiplicity at the end of the spline, as well as the
beginning. In Visio, however, if a spline begins with degree+1 knots,
Visio assumes that the spline is nonperiodic and that the multiple
ending knots are implied.

For a periodic spline, the multiplicity of the first knot can be less than
or equal to the degree of the spline. For example, if the spline has a
degree of 3, the first one, two, or three knots can have the same value,
but the fourth knot must be greater.

How spline data is organized
in the ShapeSheet window
In the ShapeSheet window, Visio displays the definition of the spline
in a Geometry section that contains a SplineStart row followed by
one or more SplineKnot rows. The SplineStart row must be preceded
by another kind of row, such as a Start row, to indicate the first con-
trol point of the spline. The preceding row can be a LineTo, ArcTo, or
EllipticalArcTo row if the spline follows a segment of that type.

The following table describes the values in spline row cells. All coor-
dinates are local. Spline knots are specified as described in “Splines:
the basics” earlier in this appendix.

Spline representation in the Geometry section

Row Cell Value

The row that precedes SplineStart X The x-coordinate of the spline’s first control point

Y The y-coordinate of the spline’s first control point

SplineStart X The x-coordinate of the spline’s second control point

Y The y-coordinate of the spline’s second control point

A The position of the second knot on the spline

B The position of the first knot on the spline

C The position of the last knot on the spline

D The degree of the spline (an integer from 1 to 9)

SplineKnot X The x-coordinate of a control point

Y The y-coordinate of a control point

A The position of the third or greater knot on the spline



A R C S   A N D   S P L I N E S   I N   V I S I O 427

For a valid spline, the values of these cells must follow certain rules:

• The knot values must not decrease from the first knot to the last.

• The multiplicity of the first knot (the number of times the same
knot value occurs) may not exceed the degree of the spline plus 1.
For example, if the spline has a degree of 3, the first four knots
can have the same value.

• The multiplicity of all knots after the first must not exceed the
degree of the spline.

• If you’re creating splines in Visio from a data set that has
degree+1 ending knots, you need to create a SplineKnot row
for only one ending knot, not degree+1 knots.

• The degree of the spline must be an integer from 1 to 9. A value
of 1 draws the spline as straight segments between control points
(which is essentially identical to its control polygon). The higher
the degree, the flatter the spline’s curves will be.

• Unless the degree of the spline is 1, the SplineStart row must be
followed by at least one SplineKnot row.

If you delete a SplineKnot row of a nonperiodic spline so that it has
fewer than degree+1 knots at the beginning, Visio assumes that you
want a periodic spline and converts the spline.

If the spline definition becomes invalid, Visio draws the spline as if
the last SplineKnot row is a LineTo row. All other SplineKnot rows are
ignored.

Creating a spline in the ShapeSheet window:
an example
The following example shows how to create a spline in the
ShapeSheet window. Suppose you want to create a spline based on the
following definition:

Degree = 3
Control points = {3,3}, {3,5}, {5,5}, {5,3}, {7,3}
Knots = 0, 0, 0, 0, 1, 2

Using conventional mathematical notation, the knots of the same
spline would be specified as 0, 0, 0, 0, 1, 2, 2, 2, 2.



4 2 8 A  P  P  E  N  D  I  X    A

To create the example spline in the ShapeSheet window:

1. Use the line tool to draw the spline’s control polygon as a series of
line segments connecting its control points. In this example, the
control polygon and its Geometry section would look like this.

A spline’s control polygon drawn as a Visio shape

2. In the ShapeSheet window, change the row type of the first
LineTo row to SplineStart.

3. Change the row type of all subsequent LineTo rows to
SplineKnot.

4. Set formulas as shown in the following table.

Row Cell Formula Meaning

SplineStart Geometry1.A2 =0 Second knot

Geometry1.B2 =0 First knot

Geometry1.C2 =2 Last knot

Geometry1.D2 =3 Degree of the spline

SplineKnot Geometry1.A3 =0 Third knot

SplineKnot Geometry1.A4 =0 Fourth knot

SplineKnot Geometry1.A5 =1 Fifth knot

The resulting spline and its Geometry section look like this.

The control polygon converted to a spline



Topics in this appendix

Sections, cells, and indexes for shapes ...................................................... 430

Sections, cells, and indexes for pages ....................................................... 435

Tab cells and row types .............................................................................. 437

General-purpose index constants ............................................................... 438

Using contants in VISCONST.BAS

Many of the constants in VISCONST.BAS rep-
resent arguments for various methods.
Constants that pertain to a particular
method are listed with the method in the Au-
tomation Reference in online help. Certain
other constants in VISCONST.BAS are re-
served for future use or for internal use by
Visio, and their values may change in future
versions of Visio. Unless a constant is listed
in this appendix or in the Automation Refer-
ence, you should not use it in your
programs.

Appendix B
ShapeSheet sections,
cell references,
and index constants

This appendix lists cell references for cells that appear in the
ShapeSheet window for shapes, pages, and masters. Cell references
are grouped alphabetically by section name. This appendix also lists
the corresponding index constants that you can use in a program to
access sections, rows, and cells with Automation, plus index constants
you can use to access tab settings.

For details about using cell references in formulas, search online help
for “formulas: cell references.” For details about accessing cells from a
program, see “Getting cells from shapes” in Chapter 13, “Getting in-
formation from Visio drawings,” and “Working with formulas” in
Chapter 14, “Working with drawings and shapes.”



4 3 0 A  P  P  E  N  D  I  X    B

Sections, cells, and indexes for shapes

This table lists sections and cells that are displayed in the ShapeSheet
window, with constants for the corresponding section, row, and cell
indexes.

In sections that have a variable number of rows, such as
visSectionAction, rows are indexed using the row constant as a base.
To refer to a particular row, add an integer offset to the row index
constant, starting with 0 for the first row.

TIP  To find the value of a constant, use the Object Browser in the
Visual Basic Editor. When a constant is selected in the Members Of
list, the details pane displays the value of the constant.

Section Cell reference Section index Row index Cell index

1-D Endpoints1 BeginX visSectionObject visRowXForm1D vis1DBeginX

BeginY vis1DBeginY

EndX vis1DEndX

EndY vis1DEndY

Actions Actions.Action[n] visSectionAction visRowAction + n visActionAction

Actions.Menu[n] visActionMenu

Actions.Prompt[n] visActionPrompt

Actions.Cn visActionChecked

Actions.Dn visActionDisabled

Alignment2 AlignLeft visSectionObject visRowAlign visAlignLeft

AlignCenter visAlignCenter

AlignRight visAlignRight

AlignTop visAlignTop

AlignMiddle visAlignMiddle

AlignBottom visAlignBottom

Character Char.Font[n] visSectionCharacter visRowCharacter + n visCharacterFont

Format Char.Color[n] visCharacterColor

Char.Style[n] visCharacterStyle

Char.Case[n] visCharacterCase

Char.Pos[n] visCharacterPos

Char.Size[n] visCharacterSize

Connection Connections.Xn visSectionExport visRowExport + n visX

Points Connections.Yn visY

1 Valid only for 1-D shapes.
2 Valid only for shapes that are glued to one or more shapes or guides.



S H A P E S H E E T   S E C T I O N S ,   C E L L   R E F E R E N C E S ,  A N D   I N D E X   C O N S T A N T S 431

Section Cell reference Section index Row index Cell index

Controls Controls.Xn visSectionControls visRowControl + n visCtlX

Controls.Yn visCtlY

Controls.XDyn[n] visCtlXDyn

Controls.YDyn[n] visCtlYDyn

Controls.XCon[n] visCtlXCon

Controls.YCon[n] visCtlYCon

Controls.CanGlue[n] visCtlGlue

Controls.Prompt[n] visCtlTip

Custom Prop.Name.Label visSectionProp visRowProp + n visCustPropsLabel

Properties Prop.Name.Prompt visCustPropsPrompt

Prop.Name.SortKey visCustPropsSortKey

Prop.Name.Type visCustPropsType

Prop.Name.Format visCustPropsFormat

Prop.Name.Value3 visCustPropsValue

Prop.Name.Invisible visCustPropsInvis

Prop.Name.Verify visCustPropsAsk

Events TheData visSectionObject visRowEvent visEvtCellTheData

TheText visEvtCellTheText

EventDblClick visEvtCellDblClick

EventXFMod visEvtCellXFMod

EventDrop visEvtCellDrop

Fill Format FillBkgnd visSectionObject visRowFill visFillBkgnd

FillPattern visFillPattern

FillForegnd visFillForegnd

ShdwBkgnd visFillShdwBkgnd

ShdwPattern visFillShdwPattern

ShdwForegnd visFillShdwForegnd

3 The Value cell is the default and can be omitted from the cell reference.



4 3 2 A  P  P  E  N  D  I  X    B

Section Cell reference Section index Row index Cell index

Geometryn

(Start row)4 Geometryn.NoFill visSectionFirstComponent + n visRowComponent visCompNoFill

Geometryn.NoShow visCompNoShow

Geometryn.X1 visRowVertex + 0 visX

Geometryn.Y1 visY

(LineTo row) Geometryn.X2...n visRowVertex + n visX

Geometryn.Y2...n visY

(ArcTo row) Geometryn.X2...n visRowVertex + n visX

Geometryn.Y2...n visY

Geometryn.A2...n visBow

(EllipticalArcTo Geometryn.X2...n visRowVertex + n visX

row) Geometryn.Y2...n visY

Geometryn.A2...n visControlX

Geometryn.B2...n visControlY

Geometryn.C2...n

visEccentricityAngle

Geometryn.D2...n visAspectRatio

(SplineStart row) Geometryn.X2...n visRowVertex + n visX

Geometryn.Y2...n visY

Geometryn.A2...n visSplineKnot

Geometryn.B2...n visSplineKnot2

Geometryn.C2...n visSplineKnot3

Geometryn.D2...n visSplineDegree

(SplineKnot row) Geometryn.X2...n visRowVertex + n visX

Geometryn.Y2...n visY

Geometryn.A2...n visSplineKnot

Guide Info5 PinX visSectionObject visRowGuide visX

PinY visY

Angle visGuideFlags

Image Info6 ImgOffsetX visSectionObject visRowForeign visFrgnImgOffsetX

ImgOffsetY visFrgnImgOffsetY

ImgWidth visFrgnImgWidth

ImgHeight visFrgnImgHeight

4 Although the Start row of a Geometry section appears as one row in the ShapeSheet window, it is represented internally by two row indexes:
visRowComponent and visRowVertex + 0. Rows that follow the Start row are visRowVertex + 1, visRowVertex + 2, and so forth.

5 Valid only for guides and guide points.
6 Valid only for linked or embedded objects.



S H A P E S H E E T   S E C T I O N S ,   C E L L   R E F E R E N C E S ,  A N D   I N D E X   C O N S T A N T S 433

Section Cell reference Section index Row index Cell index

HyperLink Description visSectionObject visRowHyperlink visHLinkDescription

ExtraInfo visHLinkExtraInfo

Frame visHLinkFrame

Address visHLinkAddress

NewWindow visHLinkNewWin

SubAddress visHLinkSubAddress

Layer LayerMember visSectionObject visRowLayerMem visLayerMember

Membership

Line Format LineWeight visSectionObject visRowLine visLineWeight

LineColor visLineColor

LinePattern visLinePattern

Rounding visLineRounding

BeginArrow visLineBeginArrow

EndArrow visLineEndArrow

ArrowSize visLineArrowSize

EndCap visLineEndCap

Miscellaneous NoObjHandles visSectionObject visRowMisc visNoObjHandles

NonPrinting visNonPrinting

NoCtlHandles visNoCtlHandles

NoAlignBox visNoAlignBox

UpdateAlignBox visUpdateAlignBox

HideText visHideText

ObjType visLOFlags

ObjInteract visLOInteraction

ObjBehavior visLOBehavior

Paragraph Para.IndFirst[n] visSectionParagraph visRowParagraph + n visIndentFirst

Format Para.IndLeft[n] visIndentLeft

Para.IndRight[n] visIndentRight

Para.SpLine[n] visSpaceLine

Para.SpBefore[n] visSpaceBefore

Para.SpAfter[n] visSpaceAfter

Para.HorzAlign[n] visHorzAlign



4 3 4 A  P  P  E  N  D  I  X    B

Section Cell reference Section index Row index Cell index

Protection LockWidth visSectionObject visRowLock visLockWidth

LockHeight visLockHeight

LockMoveX visLockMoveX

LockMoveY visLockMoveY

LockAspect visLockAspect

LockDelete visLockDelete

LockBegin visLockBegin

LockEnd visLockEnd

LockRotate visLockRotate

LockCrop visLockCrop

LockVtxEdit visLockVtxEdit

LockTextEdit visLockTextEdit

LockFormat visLockFormat

LockGroup visLockGroup

LockCalcWH visLockCalcWH

LockSelect visLockSelect

Scratch Scratch.Xn visSectionScratch visRowScratch + n visScratchX

Scratch.Yn visScratchY

Scratch.An visScratchA

Scratch.Bn visScratchB

Scratch.Cn visScratchC

Scratch.Dn visScratchD

Shape Transform7 PinX visSectionObject visRowXFormOut visXFormPinX

PinY visXFormPinY

Width visXFormWidth

Height visXFormHeight

LocPinX visXFormLocPinX

LocPinY visXFormLocPinY

Angle visXFormAngle

FlipX visXFormFlipX

FlipY visXFormFlipY

ResizeMode visXFormResizeMode

Text Block VerticalAlign visSectionObject visRowText visTxtBlkVerticalAlign

Format TopMargin visTxtBlkTopMargin

BottomMargin visTxtBlkBottomMargin

LeftMargin visTxtBlkLeftMargin

RightMargin visTxtBlkRightMargin

TextBkgnd visTxtBlkBkgnd

7 In Visio 5.0, a guide can have a Shape Transform section. If so, only the PinX, PinY, and Angle cells in that section are valid. The formulas
in these cells override those in PinX and PinY in the Guide Info row. However, if the document is saved in pre-5.0 format, the guide reverts
to the position defined by PinX and PinY in the Guide Info row.



S H A P E S H E E T   S E C T I O N S ,   C E L L   R E F E R E N C E S ,  A N D   I N D E X   C O N S T A N T S 435

Section Cell reference Section index Row index Cell index

Text Fields8 Fields.Value[n] visSectionTextField visRowField + n visFieldCell

Text Transform TxtPinX visSectionObject visRowTextXForm visXFormPinX

TxtPinY visXFormPinY

TxtWidth visXFormWidth

TxtHeight visXFormHeight

TxtLocPinX visXFormLocPinX

TxtLocPinY visXFormLocPinY

TxtAngle visXFormAngle

User-Defined User.Name.Value9 visSectionUser visRowUser + n visUserValue

Cells User.Name.Prompt visUserPrompt

8 Each Text Fields row has one cell that contains the custom formula of the corresponding text field.
9 Value is the default cell for this row and can be omitted from the cell reference.

Sections, cells, and indexes for pages

This table lists sections and cells that are displayed in the ShapeSheet
window for a drawing page or a master editing page, with constants
for the corresponding section, row, and cell indexes.

Section Cell reference Section index Row index Cell index

Actions Actions.Action[n] visSectionAction visRowAction + n visActionAction

Actions.Menu[n] visActionMenu

Actions.Prompt[n] visActionPrompt

Actions.Cn visActionChecked

Actions.Dn visActionDisabled

Custom Prop.Name.Label visSectionProp visRowProp + n visCustPropsLabel

Properties Prop.Name.Prompt visCustPropsPrompt

Prop.Name.SortKey visCustPropsSortKey

Prop.Name.Type visCustPropsType

Prop.Name.Format visCustPropsFormat

Prop.Name.Value1 visCustPropsValue

Prop.Name.Invisible visCustPropsInvis

Prop.Name.Verify visCustPropsAsk

1 Value is the default cell for this row and can be omitted from the cell reference.



4 3 6 A  P  P  E  N  D  I  X    B

Section Cell reference Section index Row index Cell index

HyperLink Description visSectionObject visRowHyperlink visHLinkDescription

ExtraInfo visHLinkExtraInfo

Frame visHLinkFrame

Address visHLinkAddress

NewWindow visHLinkNewWin

SubAddress visHLinkSubAddress

Layers Layers.Name[n] visSectionLayer visRowLayer + n visLayerName

Layers.Visible[n] visLayerVisible

Layers.Print[n] visLayerPrint

Layers.Active[n] visLayerActive

Layers.Locked[n] visLayerLock

Layers.Snap[n] visLayerSnap

Layers.Glue[n] visLayerGlue

Layers.Color[n] visLayerColor

Layers.Status[n] visLayerStatus

Page PageWidth visSectionObject visRowPage visPageWidth

Properties PageHeight visPageHeight

PageScale visPageScale

DrawingScale visPageDrawingScale

ShdwOffsetX visPageShdwOffsetX

ShdwOffsetY visPageShdwOffsetY

DrawingSizeType visPageDrawSizeType

DrawingScaleType visPageDrawScaleType

Ruler XRulerOrigin visSectionObject visRowRulerGrid visXRulerOrigin

& Grid YRulerOrigin visYRulerOrigin

XRulerDensity visXRulerDensity

YRulerDensity visYRulerDensity

XGridOrigin visXGridOrigin

YGridOrigin visYGridOrigin

XGridDensity visXGridDensity

YGridDensity visYGridDensity

XGridSpacing visXGridSpacing

YGridSpacing visYGridSpacing

Shape Transform2 Angle visSectionObject visRowXFormOut visXFormAngle

User-Defined User.Name.Value3 visSectionUser visRowUser + n visUserValue

Cells User.Name.Prompt visUserPrompt

2 In Visio 5.0, a page can have a Shape Transform section. If it does, only the Angle cell is valid, although the section contains all of the Shape
Transform cells shown in “Sections, Cells, and Indexes for Shapes.”

3 Value is the default cell for this row and can be omitted from the cell reference.



S H A P E S H E E T   S E C T I O N S ,   C E L L   R E F E R E N C E S ,  A N D   I N D E X   C O N S T A N T S 437

Tab cells and row types

The tab settings for a shape’s text are accessible from a program only
by section, row, and cell index. In Visio, tab settings can be displayed
and changed on the Tabs tab (choose Text from the Format menu,
then click Tabs).

Section index Row index Cell index

visSectionTab visRowTab + n 0 ... 30

The section contains a row for each set of tabs defined for the shape.
Each row contains three cells for each tab defined in that row, up to
ten tabs. Cells for the entire row are indexed starting with 0.

Index Determines

0 Number of active tabs in the row

1 Position of the first tab

2 Alignment code for the first tab

3 Reserved

4 Position of the second tab

5 Alignment code for the second tab

6 Reserved

… …

28 Position of the tenth tab

29 Alignment code for the tenth tab

30 Reserved

The number of tabs that can be set depends on the tab row type. The
row type can be changed by setting the RowType property of a tab
section row in a shape with one of the following row tag constants:

• visTagTab0. Zero tabs. Text defaults to tabs every 0.5 inches.

• visTagTab2. Zero, one, or two tabs.

• visTagTab10. Zero to 10 tabs.



4 3 8 A  P  P  E  N  D  I  X    B

General-purpose index constants

You may find the following constants useful when iterating through
all of the sections and rows for a shape, or checking for errors when
retrieving sections and rows.

Logical position constants
The following constants allow you to access sections and rows by
logical position. Use logical position constants when you want to iter-
ate through all of the sections of a shape or rows of a section, but the
order of traversal is not important.

Constant Represents

visSectionFirst The first section for a shape

visSectionLast The last section for a shape

visRowFirst The first row in any section

visRowLast The last row in any section

Error constants
The following constants are returned when a program is unable to re-
trieve a section or row:

• visSectionNone. The requested section could not be retrieved.

• visRowNone. The requested row could not be retrieved.



Index

Symbols
,  (Comma) 382
=  (Equal sign) prefix to ShapeSheet

formula 30, 301
""  (Null string) 266
"  (Quotation marks) 30, 233, 301
1-D Endpoints section 68–69,

430. See also Endpoints
1-D shapes. See also

Connectors; Shapes
2-D shapes compared to 99,

100–101, 102
alignment boxes 100, 170, 172
as connectors 100, 103, 104
begin points 100, 107
behavior of 99, 100–101, 107
cell references to 236, 237
converting 2-D shapes to 101
creating 100, 107–108
endpoints 100, 101, 107, 109–110
formulas for 102, 105, 106, 108
gluing 101, 109–111,

236–237, 239, 270
grouping 108
height-based 107–108
resizing 107
rotating 102
selection handles 100
vertices of 100–101

16-bit and 32-bit programs 395
2-D shapes. See also

Connectors; Shapes
1-D shapes compared to 99,

100–101, 102
alignment boxes 167–168
behavior of 99, 100–101
converting 1-D shapes to 101
default settings 104
gluing 109–111, 270
rotating 102
selection handles 100
snap-to-grid 167–168

3-D boxes 73–77

A
Accelerator object 337
Accelerators 354
AccelItem object 206, 337
AccelItems collection 218, 337
AccelTable object 206, 344–346
AccelTables collection 218, 337
Access database (Microsoft) 246, 275
Action cell 87, 88, 89, 91, 363–365
Action command 87
Action dialog box 363–364
Action property 332
Actions. See also names of

specific actions
in shortcut menus 87, 90–91
naming 89

Actions section
cells 90
commands in 88, 91–92, 95
described 87
for pages 435
for shapes 430

ActionText property 350
Activate method 223
Active page 254
ActiveDocument method 403, 404
ActiveDocument property 208,

218, 255
ActivePage property 208, 254
ActiveWindow property 208
ActiveX controls

adding to drawings 369–372
described 5
distributing 375
event handling 372–373
getting 374
in templates 200
interaction with shapes 375
list of 371
naming 373–374
printing drawings without 372
protecting 372
selected 371

tabbing order of 371
using at run time 373–374

ActiveX EXE, Visual Basic 5.0
code as 393

Add method
Application object 391
Documents collection 386, 387
EventList collection 324
indicating event using 324
Layers collection 286
Menus collection 336
Pages collection 280
return values 404
Styles collection 290–291
Toolbar object 338
ToolbarItems collection 338
Toolbars collection 338

Add Procedure dialog box 44
Add-ons

enabling 413
in Visio object model 206
presented in interfaces 413
registering 412–414
running 50, 412–416
running from events 318, 325–326
standalone programs compared to

202–203
AddAdvise method

calling 407, 408–409
Event object 327, 330, 331
EventList collection 324
indicating event using 324

AddAt method 336, 338
AddNamedRow method 312
Addon object 391
AddOnArgs property 350, 390
AddOnName property 350
AddonPaths property 361, 391
Addons collection 391
AddRef method 402
AddRow method 304, 309
AddSection method 304, 309
AddShortcutMenuItem macro 346



4 4 0 I N D E X

ADDSINK.H 408
AddToolbarButton macro 348–349
AlignBottom cells 239
AlignCenter cells 239
AlignLeft cells 239
Alignment boxes

customizing 169–170, 171–172
defining 74, 170
described 169–170
hiding 172
of 1-D shapes 100, 170, 172
of 2-D shapes 167–168
of asymmetrical shapes 169–170
of custom patterns 151
of fill patterns 151
of groups 74, 171–172
of line ends 151
of line patterns 151, 155–156
protecting 170
rotating 170
size of 170
snapping to grid 67, 169–170
updating 172

Alignment cells 239
Alignment section 69, 174, 430
AlignMiddle cells 239
AlignRight cells 239
AlignTop cells 239
Ambient properties 373
Anchor points 85, 86.

See also Control handles
Angle cell 65, 170
Angle of rotation 132
Angled connectors 105–106
Angles

displaying values of 132
text orientation 124–125
units of measure 29

Application object
Addons collection 391
as property of Global object 215
as source of event 323
creating 208, 214–216, 381,

384–386
documents and 387
getting 381–382, 402–403
in Visio object model 206
interfaces applied to 341, 342

methods 357, 391
properties 381

AddonPaths 361, 391
BuiltInMenus 343
BuiltInToolbars 343
CustomMenus 343
CustomMenusFile 342, 356
CustomToolbars 343
CustomToolbarsFile 342, 356
Documents 387
DrawingPaths 361
FilterPaths 361
HelpPaths 361
ShowMenus 351
ShowStatusBar 351
StartupPaths 361, 391
StencilPaths 361
TemplatePaths 361, 387
ToolbarStyle 351
WindowHandle 385

releasing 221, 382
return values 208

Application property 208, 222
AppMessage procedure example 227
Arcs 63, 420–423. See also

Angles; Splines
ArcTo rows 420, 421, 422
Arguments. See also names of specific

methods or properties
constants defined for 392
declaring variables for 222
in command strings 390–391
numeric values 392
passing to Visio 405–406
to add-ons 415
to methods 222, 392, 405–406
to programs 390–391
to properties 218, 222, 223, 392
unique IDs as 314

Arrays 218. See also Collections
Arrow shapes 15, 58, 60–62,

102, 157
Assignment statements 222
Autoload.mak 393
Automation. See also names of specific

programming languages
background pages 280–283

cells
formulas 300–302
getting 263–266, 299–300
user-defined 312–313

Component Object Model
(COM) 396

controlling applications 198,
202, 203

custom properties 312–313
data

associating with shapes 311–314
for documents 255–256
for pages 258
for shapes 259–262

declarations of Visio objects
400–402

documents
creating 387
data for 255–256
printing 234
saving 234–235

exposing
events 207
methods 207
objects 198, 205, 207
properties 207

instance of Visio 403
interfaces 200, 396–397
layers 283–287
libraries 198
network diagram sample 246–251
objects

as components 4
creating 199, 386
exposing 198, 205, 207,
396–397

pages 258–278, 280–283
passing arguments to Visio 405–406
planning programs 198–204
programming for Visio 41
rows 304–305, 307–308
sections 304–305, 307–311
segments 306
shapes

arrangement on page 243–245
changing 293
creating 292–298
data for 259–262



I N D E X 4 4 1

styles 288–291
unique IDs 312, 313–314
user-defined cells 312–313
using with Visio 4
viewing descriptions 48
Visio object model 206–213,

380–381
Automation Reference (Visio) 6, 207

B
B-splines 56, 424. See also Splines
BackColor property 373
Background pages 257–258,

280–281. See also Pages
Background property 257, 280
BackPage property 257, 280–281
.BAS. See Visual Basic for Applications

(VBA): modules
Basic Diagram template 387
BASIC DIAGRAM.VST 387
BASIC SHAPES.VSS 387
BeforeDocClose event 331
BeforeMasterDelete event 362
BeforePageDelete event 362
BeforeQuit event 327, 331, 409
BeforeSelDelete event 362
BeforeStyleDelete event 362
Begin points

1-D shapes 100, 107
cell references 236, 237
described 100
drawing lines 292
gluing 101, 239
positioning 247

Begin property 233, 251, 262
BeginArrow cell 150
BeginX and BeginY cells 69, 239
BegTrigger cell 110
Behavior cells 85–86
Behavior dialog box 72
Bezier curves 424. See also

Curves; Splines
Bolt shape example 13
Boolean values 275
Bows of arcs 422
BringToFront command 130
BuiltInMenus property 206, 335, 343
BuiltInToolbars property 206,

335, 338, 343

C
C-CPP folder 225, 395, 397–398, 410
C/C++ programs. See also Programs

arguments to methods in 405–406
customizing interfaces from 334
getting Application object 402–403
in DVS folder 395, 397–398, 410
instance of Visio 403
methods in 405–406
objects in 198
passing VARIANTs to Visio 406
passing arguments to Visio 406
programming for Visio 40, 202,

407–409
Visio libraries 410–413
Visual Basic compared to 201,

202–203
Caption property 338, 350
Cascading menus 336
Cell object

as source of event 323
conflicts with 214
getting 237, 262–263, 299–300
gluing 237–238
in Visio object model 206, 263, 299
methods

GlueTo 236, 237–238, 405
GlueToPos 236, 237–238
Result 265
ResultInt 265
ResultIU 265
ResultStr 265, 275

properties
Cells 263
CellsSRC 263
Error 228
Formula 262, 274, 300–301
Result 301, 302
ResultInt 302
ResultIU 302
ResultStr 302

references to 237
retrieving text strings in 275
setting formulas in 236, 237

Cell references
1-D shapes 236, 237
and gluing 236–237
begin points 236
compound 278

connection points 112, 236–237
control handles 236
creating dependency 318
described 27
getting objects by 299–300
in formulas 62
linking shape properties 14
of groups 76
rules 28, 30
setting 237
shortcuts 28
to cell objects 237, 263
to endpoints 236, 237
using cell names 263
using IDs 27
using object names 27
using Scratch cells 30
using user-defined cells 30

CellChanged event 321, 322
Cells. See also names of specific cells

binding programs to 363–365
custom properties 264–265
editing 300–302
for pages 435–436
for shapes 430–435
formulas 236, 237, 298–303, 318
functions 318
getting by index 263, 299, 300
getting by name 263, 281
GUARD function in 302
naming 263, 264
Scratch 30
text color in 27
user-defined 30, 264–265, 312–313

Cells method 406
Cells property

arguments 223
formatting 291
getting 223, 237
getting Cell objects 299–300
return values 263
setting 223, 281

CellsC property 286–287
CellsSRC property

getting cells with 263, 299–300
iterating 307–308
layer settings 287

Center of rotation. See Pin
Chair shape 90, 92



4 4 2 I N D E X

ChangeToolbarButtonIcon macro 350
ChangeToolbarButtonPriority

macro 349
Character Format section 79,

116, 117, 430
Character section 117, 300
Characters object

as source of event 323
in Visio object model 206
properties 233, 251, 262, 274
text ranges 233
text subsets 251

Characters property 233, 262
Chart Shape Wizard 203
Check_valid macro 404
Checked cell 90
Chr$ function 233, 251
Circle shapes 70
Circular arcs. See Arcs
Class modules

creating instances of 321
inserting 43–45
Instancing property 393
using 40–41, 49

ClearCustomMenus method 357
ClearCustomToolbars method 357
.CLS. See Class modules
CmdNum property 351
Code. See also Programs

copying templates 49
copyright of 32, 176, 367
generating Visio drawing 21
protecting 50
storing 394
testing 227
writing for events 318–322

Collections. See names of
specific collections

compared to arrays 218
default property 218, 224
deleting objects from 220
empty 227
in Visio object model 206, 207
indexed 218, 337
iterating through 220, 227, 255
properties 218–219, 220, 224
references to objects in 218–219

Color dialog box 144
Color indexes 144

Color Palette command
(Tools menu) 144

Color Palette dialog box 144
Color palettes 145
Colors

in Visio object model 206
on different printers 180
on different video systems 179
using 144–146

Colors collection 218
Columns. See CellsC property;

CellsSRC property
COM (Component Object Model) 396
Combine command 68, 70,

107, 108.
See also Multishapes

Combine method 297, 298
Combined shapes 108, 297.

See also Multishapes; Shapes:
grouped shapes

ComboBox1_Change event
handler 376–378

Command function (Visual Basic) 389
Command ID 351
Command strings 91–92, 389, 390
CommandButton1_Click event

handler 376–378
Comma (,) 382
Component Object Model (COM) 396
Component shapes. See Groups:

component shapes
Compound object references

224–225. See also References
Concatenating 224–225
Connect object

getting 267–268
in Visio object model 206, 266–267
iterating through 271–273
properties 268–271

Connect Shapes command 103
Connected diagrams 243, 266–267
Connected shapes.

See also Shapes: glued
analyzing 270–271
gluing 110
resizing 63

Connection data 270. See also Data
Connection points. See also Glue

coordinates of 111
creating 111

gluing 109–111, 235–240,
249–250, 270

in groups 69, 112
inherited 307
local 307
location on shapes 269
naming 5, 111–112
nodes 249–250
on grid lines 67
on masters 168
on routable connectors 112
origination 268

Connection Points section 307, 430
Connections

analyzing 270–271
breaking 235–236
iterating through 271–273

Connections.Row cell, naming
5, 111–112

ConnectionsAdded event 5
ConnectionsDeleted event 5
Connector tool 103
Connectors. See also 1-D

shapes; Control handles; Glue
1-D shapes as 100, 103, 104
adding to shapes 105
angled 105–106
creating 112
curved 63
formulas for 105, 106, 108
gluing 110
height-based 107–108
routable 103–104, 112

Connects collection 267–268
Connects property 267–268
Constants. See also names of specific

constants or properties;
Arguments

error 438
FromPart and ToPart properties

268–271
general purpose 438
global 381, 392
hexadecimal values 324
high bit set 324
in VISCONST.BAS 429
logical position 308, 438
row tag 304–305
units of measure 266

ContainingMaster property 298



I N D E X 4 4 3

ContainingPage property 298
ContainingShape property 298
Control dialog box 371
Control handles. See also

Connectors; Controls section
3-D boxes 77
adding 83–84, 106
anchor points 86
behavior of 85–86
defining 83
displaying 85–86
gluing 236–239, 241, 249–250, 270
hiding 85
location on shape 83, 84
locking 78–79
moving 85, 86
offsetting 85
resizing 85–86
setting depth perspective 77
text blocks 118–119

Control polygon of splines 425, 428
Controls

adding to drawings 370–372
described 45
distributing 375
event handling 372–373
getting 374
in templates 200
naming 373–374
printing drawings without 372
protecting 372
selected 371
tabbing order of 371
using at run time 373–374

Controls cells 239
Controls section. See also Control

handles
adding control handles 83–84, 119
cell references and indexes 431
setting control handle

behavior 85–86
setting depth perspective 77

Controls Toolbox 45–46
Converting

1-D shapes to 2-D shapes 101
coordinates 71, 101, 292

Coordinates
calculating for objects on page 245
converting 71, 101, 292
described 56–57

effects of creating or dropping
shapes 292

effects of flipping and rotating
shapes 57, 58–59, 64–67

in relation to other shapes 101
in Shape Transform section

57, 58, 59
local

described 57
effects of flipping and rotating

shapes 64, 65
of groups 69
of pin 58
of shapes in groups 73–74
origin of 57
page coordinates compared to 57
parent coordinates compared

to 57, 58
of groups 57, 69
of shapes in groups 73–74
origins of 56–57
page

calculating 244
effects of flipping and rotating

shapes 64, 65
local coordinates compared to 57
of pin 58
origin of 57
specifying 232

parent 73–74
effects of flipping and rotating

shapes 58, 64, 65
local coordinates compared to 57
resizing shapes 74

text blocks 114, 233
Copy method 223, 293, 297
Copying shapes 293
Copyright 32, 176, 367
CopyShapesToTable subroutine

277–278
Corners 63. See also Curves
Corners command 63
Count property 218, 219, 220, 296.

See also For loops; While loops
Counting shapes on pages 261
CreateObject function 381, 382,

386, 393.
See also GetObject function

CreateOrgChart subroutine example
241–242, 244

Creator property 255, 274
Curve objects 5
Curves 63, 424. See also

Arcs; Corners; Splines
Custom formulas. See also Formulas

getting 262
in Geometry section 106, 108
protecting 79, 116, 117

Custom patterns
creating 150–151
fill patterns 152–153
line ends 157–158
line patterns 154–156

Custom properties. See also Cells:
user-defined; Properties

adding 93–95, 312
associating information with

shapes 92, 312
data type 94
databases linked to 96
defining 93–95
displaying 134
getting cells 264–265
hiding 95
in database records 274
listing 375–378
names of properties 93
protecting 95

Custom Properties dialog box 95, 134
Custom Properties section 92–96,

431, 435
Custom user interface 339–340,

342, 355–356
CustomMenus property 206, 335,

340, 343
CustomMenusFile property 342, 356
CustomToolbars property 206, 335,

340, 343
CustomToolbarsFile property 342, 356
Cut method 293, 297
CVisAddonSink helper class 408–409
CVisioApplication wrapper class 400
CVisioCell argument 405, 406
CVisioDocument object 403
CVisioDocument wrapper class 403
CVisioMaster 406
CVisioPage 398, 406
CVisioShape object 406



4 4 4 I N D E X

D
DAO. See Data Access Objects (DAO)
Data. See also Information

associating with shapes 18–19,
311–314

connection data 270
designing shapes for 19
displaying 18–19
for documents 255–256
for pages 258
for shapes 259–262
from external sources 18, 19
getting 19, 201
in cells 311–314
in custom properties 18, 312
in databases 275–278
in Visio object model 206–207
inherited 306–307
local 306–307

Data Access Objects (DAO) 246–247
Data types 93, 94, 222
Data1, Data2, and Data3 properties

262, 274, 278
Database Wizard 19, 96
Databases

applications for unique
IDs 274, 313–314

creating network diagrams
from 246–251

data storage in 275–278
drawing from 199
opening 246
records in 274
updating data 96

Declarations
of add-ons for Visio libraries

412–414
of object variables 214, 320–321
of variables for arguments 222
of variables for properties 222
of Visio objects 400–402

Define Styles command (Format
menu) 141, 142, 148

Define Styles dialog box 148
Degrees of splines 424
Delete method

arguments to 286
deleting items from user

interface 351

deleting layers 286
deleting shapes 293, 297
releasing Event objects 331

DeleteAccelItem macro 354
DeleteHierarchicalMenuItem

macro 351
DeleteSection method 305
DeleteToolbarButton macro 353
DEPENDSON function 318, 365
Description property 255, 274
DeselectAll method 297
Deselecting 296–297. See also

Selection object
Design mode 370
Design notes 60, 176
Developer toolbar

described 5
displaying ShapeSheet

spreadsheets 24, 25
starting Visual Basic Editor from 42
using 25

Developing Visio Solutions disk. See
DVS (Developing Visio Solutions)

folder
Dialog boxes. See names of specific

dialog boxes
Dimensions of Masters 167–168.

See also Masters
Disabled cell 90
Disk space, saving 186
Display properties row 305
DocIndex 389
DOCMD function 95
Document object

as source of event 323
conflicts with 214
default property 224
described 207
in Visio object model 206, 207, 254
index of 389–390
interfaces applied to 341
methods

ClearCustomMenus 357
ClearCustomToolbars 357
Drop 294–295
Item 406
Open 254–278
OpenEx 255

Print 234
Save 234–235
SaveAs 213, 234, 235, 256

properties
ActiveDocument 218
Count 218, 219, 220
Creator 255, 274
CustomMenus 340
CustomToolbars 340
Data1, Data2, and Data3

262, 274, 278
Description 255, 274
Documents 218
Fullname 256, 274
Item 218, 219
Keywords 255, 274
Masters 231
Name 224, 256, 274
Pages 208
Path 235, 256, 274
ReadOnly 256
Saved 235, 256
Styles 288
Subject 255, 274
Title 255, 274

references to objects in 217, 218
ThisDocument object compared

to 216–217
Document property 208, 255
Document_BeforeSelectionDelete event

handler 376–378
Document_DocumentOpened event

handler 376–378
Document_ShapeAdded event

handler 376–378
DocumentChanged event 362
DocumentCreated event 362
DocumentCreated event handler

318, 319–320
DocumentOpened event 362
Documents

active 255
creating 387
data for 255–256
elements of 37, 38
formats of Visio files 37–39
getting 209–210, 254–255
names of 209–210, 256



I N D E X 4 4 5

opening 38–39, 254–278
printing 234
read-only 255
saving 37, 39–40, 234–235, 256
status of 256
storing Event object with 326

Documents collection
creating documents using 387
getting documents from 254
getting stencils from 230
in Visio object model 206, 207
properties 218–219, 220
references to objects in 217, 219

Documents property 208, 218, 387
DocumentSaved event 328, 330, 362
DocumentSavedAs event 362
Double variables 265, 275. See also

Variables
Double-Click dialog box 365
Double-clicking 226, 316, 365
DrawCreate subroutine example 244
Drawing file stencil (local stencil) 32
Drawing files 3, 31, 32
Drawing pages. See Pages
Drawing scales

choosing 162–165
font size in 122
testing 181–183

Drawing shapes 63, 199
Drawing units 29, 160, 169
DrawingPaths property 361
Drawings

creating 210–213, 384–386
file size 366
from external sources 20, 199
opening files as 39
printing 234, 372
saving 37, 39, 50, 234–235
storing 366
synchronizing with data 20

DrawLine method 292
DrawOrgChart subroutine

example 241–242, 245
DrawOval method 292
DrawRectangle method 292
Drop method

arguments taken
by 232, 247, 248, 293, 405

for adding shapes to groups 294

for creating masters 294–295
for moving shapes 232
passing arguments with 247
pin placement with 248
return values 213
subroutines 245

DropMany method 232
Dual interfaces 397
Duplicate method 293, 297
DVS (Developing Visio Solutions)

folder 6
ADDSINK.H 408
BASIC DIAGRAM.VST 387
BASIC SHAPES.VSS 387
C-CPP folder 225, 395,

397–398, 410
C/C++ programs 225, 395,

397–398, 410
DVS.BAS 383–384, 384–386
GENERIC.CPP 402, 404, 408
HELLO.VSD 254
HELPERS.H 398
IVISREG.CPP 403
IVISREG.H 403
LIBRARIES FOLDER 6
MAIN.BAS 246
NETDB 21
NETDIAG.EXE 246
NETWORK.MDB 246–247
NUDGE.EXE 302–303
ORGCHART 240–242, 244–245
ORGCHART.BAS 244–245
PROGREF.HLP 6
PROGRESS.FRM 244
QUERY.BAS 277
SAMPLE APPLICATIONS folder 6
SAMPLES.VST 225
SELSTENC.FRM 220, 227, 282–283
SHAPE SOLUTIONS folder 6, 101
SHOWARGS.EXE 325–326
STNDOC.EXE 226, 227, 243
VAO.H 411–412
VB EVENT SAMPLE.CLS 329
VB EVENT SAMPLE.FRM 325–326
VB folder 393
VB SOLUTIONS folder 6, 225,

244–245, 246, 325–326,
329, 383–384, 384–386

VBA ACTIVEX SAMPLE.VSD 376–378
VBA EVENT SAMPLE.VST 319–320
VBA SAMPLES.VST 209–213, 271,

288–289, 310–311, 348–349,
353, 354

VBA SOLUTIONS folder 6, 21, 225,
271, 288–289, 310–311,

319–320, 321, 322,
348–349, 353, 354, 376–378

VBA WITHEVENTS

SAMPLE.VSD 321, 322
VDLLMAIN.C 411
VISCONST.BAS 324, 381, 392, 393, 429
VISIO.H 398, 400, 401–402, 403
VISIWRAP.H 398, 400
VISREG.BAS 382–383, 393, 403

DVS.BAS 383–384, 384–386
Dynamic Connector shape 103
Dynamic connector tool 103
Dynamic connectors 103
Dynamic glue 109, 110
Dynamic link libraries (.DLL) 410.

See also Libraries
Dynamics cells 86

E
Edit menu 334
Elliptical arcs 63. See also Arcs
EllipticalArcTo rows 422
Enabled property 332, 391
End property 233, 251, 262
EndArrow cell 150
Endpoints

1-D shapes 100, 101, 107, 109–110
cell references 236
drawing lines 292
gluing 101, 239
in relation to other shapes 101
positioning 247

EndTrigger cell 110
EndX and EndY cells 69, 101, 239
Equal sign (=) prefix to ShapeSheet

formula 30, 301
Equations. See Formulas
Err function 227–228
Error function 227–228
Error property 228



4 4 6 I N D E X

Errors
causes 226–227

command string length 390
empty collections 227
getting instances of Visio

382, 388
invalid object references 221, 228
unnamed documents 235

constants 438
getting instances of Visio 382
preventing 226–227, 265, 388
retrieving objects 227
Save method 235
SaveAs method 235
setting formulas 302
trapping 226

Ethernet master 246, 247, 249–250
EVALTEXT function 122
Event cell 88, 363–365
Event codes 324
Event handlers

ComboBox1_Change 376–378
CommandButton1_Click 376–378
designing 328
Document_BeforeSelectionDelete

376–378
Document_DocumentOpened

376–378
Document_ShapeAdded 376–378
DocumentCreated 318, 319–320
ShapeAdded 318–319, 321,

322, 323–324
TheWindow_SelectionChanged

376–378
Event object

behavior of 332
creating 323–331, 407
described 322–323
fired 324, 331
in Visio object model 206
methods 327, 330, 331
properties 326
releasing 331
running add-ons from 325–326
sending notification 326–331
storing with documents 326
using 407

Event procedures 318
Event property 332

Event sink. See Sink object
EventDblClick cell 316, 365
EventInfo property 332
EventList collection 323, 324
Events. See also names of specific events

binding to programs 316–317,
364–365

codes 324
declaring variables with 320–321
described 315
exposing through Automation 207
formulas for 317–318
handling 318–322
order of evaluation 317
persisting 326
sources of 323–324
subjects of 323
supported by Visio 327
writing code for 318–322
writing for controls 372–373

Events section
of masters 364–365
of shapes 431
triggering formulas in cells 316–317

EventsEnabled property 332
EventXFMod cell 110, 317
Examples

3-D box 74–77
angled connector 105–106
appMessage procedure 227
arrow shape 60–62
CopyShapesToTable subroutine

277–278
CreateOrgChart subroutine

241–242
DrawCreate subroutine 244
DrawOrgChart subroutine

241–242, 245
Floor plan 19
gridCompute subroutine 244
Hello World program 210–213,

384–386
InitDatabase procedure 278
InitWith procedure 321, 322
NetInfo table 246–247
network diagram 246–251
object references 209–210, 211–213
organization chart 240–242,

244–245

pageCompute subroutine 244
property line 199
road-sign shape 130
swimming pool shape 160
valve shape 107
wall shape 172
word balloon shape 83, 84, 85–86

Excel. See Microsoft Excel
Executable programs (.EXE).

See also Programs
distributing 366
macros compared to 202, 204
running 389
storing 360, 361
Visio libraries compared

to 203, 204, 410
Explicit data type 222.

See also Data types
Extensible objects 217

F
FDeleteShapes argument 286
Field codes 262
Field command 134
File extensions 388
File paths 360–361
File Paths tab 360–361, 362, 363, 387
Files. See also Documents

formats of Visio files 37–39
including in projects 393
installing 360
opening 38–39
read-only 38–39, 40, 194,

231, 255
read/write 38–39
saving 39–40, 50
size of 366
storing 366

Fill dialog box 150
Fill Format section 79, 146, 431
Fill patterns 138, 150, 151, 152–153
FillForegnd cell 146, 149
Filling shapes 70
FillPattern cell 150
FillStyle property 289, 290
FillStyleKeepFmt property 290
FilterPaths property 361
Fixed grids. See Grids
Flip Horizontal and Flip Vertical

commands 64, 65, 66



I N D E X 4 4 7

Flipping
effects on coordinates 64–67
effects on ShapeSheet

spreadsheet 64
effects on text 125–126
locking against 66–68, 79

FlipX and FlipY cells
locking against flipping 79
text counterrotation 125–126
value of 64–65

Floor plan examples 19
Flowchart stencil 90–91
Folders, installing solutions in 360–361
Font cell 300
Fonts 122–123, 206
For loops 220, 247–248.

See also Count Property
Foreground pages 257, 258
FORMAT function 133–134
Format menu 80
FORMATEX function 131–132
Formatting. See also Styles

local 80, 138–139, 290
protecting 148–149
reformatting shapes 141–143
storing instructions 138–139

Formula bar 26–27
Formula property

changing cell formulas 300–301
errors caused by 302
getting formulas 222
Result property compared to 301
return values 262
setting 222
text strings 274

FormulaForce property 222
Formulas. See also under names of

specific objects
3-D boxes 74–77
cell references in 62
custom

getting 262
in Geometry section 106, 108
protecting 79, 116, 117

custom patterns in 150
described 2–3, 26
displaying 26, 131–132
displaying page names 317
editing 26–27

elements of 26
evaluating 26, 29
for 1-D shapes 102, 105, 106, 108
for connectors 105
for getting interfaces 343–344
for launching add-ons and

macros 318
for moving shapes 58–59, 302–303
for opening ShapeSheet window 317
for opening text blocks 317
for playing sound 317–318
for resizing 15, 62
for text orientation 125–126
getting 262, 299–300
in cells 236, 237
inherited 16, 27, 306–307

overriding 27, 80
replacing 27, 80

local 27, 306
overriding 15, 16, 302
protecting 79, 302
reducing calculations in 62
results 131–132, 265–266, 301–302
smart 62, 124–125
storing 265, 274
testing 135–136
units of measure in 29
working with 263

FormValid function 282–283
Fragment command 70
Fragment method 297, 298
Freeform tool 56. See also Splines
FreeLibrary function 411
FromCell property 270
FromConnects property 267
FromPart property 269–270, 271
FromSheet property 268, 271
FullName property 256, 274
Functions 90. See also names of

specific functions

G
GENERIC.CPP 402, 404, 408
Geometry cells

formulas in 57–58, 60
gluing 239

Geometry rows 56
Geometry section 432. See also names

of specific cells

adding 309–311
arcs represented in 420, 421
cells 57, 59–60, 70
coordinates of shapes in 57
custom formulas in 15, 76,

77–80, 106
displaying 89–90
height of shapes 57
hiding 89–90
iterating through 307–308
merging 70
multiple 68, 70
multiple paths and 304
multishapes and 88–90
path information in 70
position of shapes on page 57
references to control handles

in 83, 84
resizing and 15, 62, 107
rows 56, 309, 426–427
spline data in 426–427
vertices defined in 56, 57
width of shapes 57

GeometryCount property 307
GetAllDocNames macro 210
GetDocName macro 209–210
GetDocName subroutine 383–384
GetIDsOfNames method 402
GetName method 398
GetObject function. See also

VaoGetObject function
CreateObject function

compared to 382
errors 382
getting Application object 381–382
getting instance of Visio 382, 388
in Visual Basic for Applications

(VBA) 393
GetResults method 265
GetTypeInfo method 402
GetTypeInfoCount method 402
GetWindowTask property 385
Global constants 381, 392.

See also Constants
Global object

in Visio object model 206, 214–216
properties of 213, 254, 255

Global variables 44. See also Variables



4 4 8 I N D E X

Globally unique IDs (GUIDs).
See Unique IDs

Glue 109–111. See also
Connections; Shapes: glued

GlueTo cell 249–250
GlueTo method 236, 237–238,

241, 405–406
GlueToPos method 236, 237–238
Gluing. See also Connections;

Shapes: glued
1-D shapes 101, 109–111,

236–237, 239, 270
2-D shapes 109–111
cell pairs 239
cell references 236–237
connected shapes 110
connection points 109–111
connectors 110
control handles 109, 236,

237–238, 239, 241
described 235
formulas for 110
moving glued shapes 109, 111
parts of shapes 239
to alignment cells 239
to guides 240
to selection handles 239
to shape edges 239

GOTOPAGE function 317
Grand piano shape 78
Gravity formulas 124, 125
GRAVITY function 124–126
GridCompute subroutine example 244
Grids 67, 167–169
Group command 67, 68–69, 70
Group method 293
Groups. See also

Collections; Multishapes
adding shapes to 68–69, 294
alignment boxes in 171–172
as parent shapes 57
behavior of 68
cell references 76
component shapes

connectors 105
coordinates 73–74
formatting 80
getting 250
pin 73–74

connection points in 69, 112

creating 293–294
in Automation 250
local coordinates of 57, 69
locking formatting of 80
merged shapes compared to 68
nested 70, 76
performance 76
performance on different systems

179–180
resizing behavior of 71–72
text in 68, 70, 130, 250–251.

See also Text blocks
ungrouping 68–69

GUARD function. See also
Locking; Protecting

cell formulas in 302
described 79
for custom properties 95
format protection 149
LockMoveX and LockMoveY

cells 59
LockRotate cell 59
locks compared to 79
overriding 302
PinX and PinY cells 59
shape format protection 148–149
shapes in groups 80
size protection 121, 122
style protection 148–149
text formula protection 117
using in formulas 79,

117, 222, 302
Guide Info section 174, 432
Guide points 173–174
Guides

aligning to shapes 173–174
creating 173
gluing 101, 240, 270
rotating 173

GUIDs. See Unique IDs

H
Height cells

effects of grouping 69
GUARD function 79
setting depth perspective 77

Height-based connectors 107–108.
See also Connectors

Height-based formulas 60.
See also Formulas

Height-based shapes 60–62
Hello World program 210–213,

384–386
HELLO.VSD 254
Help files 16, 177–178
Help, online 6, 360, 361
HELPERS.H 398
HelpPaths property 361
Hide Arms command 90. See also

Show Arms command
HideText cell 116
Hierarchical menus 336
.HLP. See Help files
.HPJ. See Help files
HSL color values 144, 146
HyperLink section 433, 436

I
IconFileName method 350
Icons 179, 184, 185
ID constants 345–346
IDataObject interface 405
IDispatch interface 396,

397, 402, 407
IDs. See Shape IDs; Unique IDs
Image Info section 432
Independent stencils. See Stencils:

standalone
Index. See also under names of specific

shapes or cells
for pages 435–436
for shapes 430–435
getting cells using 299, 300
getting objects using 218–219
of collections 218, 337

Index property 284
Information. See also Data

about drawing pages 258
about paths 70
about stencils 187–188
about templates 191–193
associating with shapes 92
exchanging with external

programs 30
testing 178, 187–188, 191–193

Inherited formulas
described 16, 27
replacing 27, 80, 307
working with 306–307

InitDatabase procedure example 278



I N D E X 4 4 9

InitWith procedure example 321, 322
Insert Field dialog box 134
Inserting procedures 43
Installing files in folders 360
Installing stencils and templates 193
Instance of masters. See also Masters

creating 33
described 16, 31
formatting 143

Instance of Visio
closing 382
errors while getting 382, 388
getting 381–386
instance handle 389
launching 386, 403
releasing 221
running in other programs 4
window handles 385

InstanceHandle property 389
Instancing property 393
Interface pointers 403–404
Interfaces. See also UI object

add-ons presented in 413
built-in 335, 357
defined 397
designing 200, 339
dual 397
hiding 351
methods in 402
on objects 396–397
references to 396–397
removing items from 351–352
scope 341
storing 361

Invalid object reference
errors 221, 228.
See also Object references

Invisible cells 95
Invoke method 402
Island shape 71–72
IsSet function 404
Item method 260, 314, 404, 406
Item property 218, 219, 338, 352–353
ItemAtID method 345
ItemAtID property 336, 338
Iterating. See also Count property

through collections 220, 227, 255
through Connect objects 271
through connections 271–273
through Masters collections 227

through Pages collection 257–258
through rows 307
through ShapeSheet sections 307

IUnknown interface 402, 405, 407
IVISREG.CPP 403
IVISREG.H 403

J
Join command 70
Joining shapes. See Combined shapes;

Groups; Multishapes

K
Key property 350
Keywords property 255, 274

L
Labels 248–249, 250.

See also Text blocks
Lay Out Shapes command 103, 104
Layer index 97, 435–436.

See also Index property
Layer Membership section 433
Layer object

getting 284
in Visio object model 206, 283, 284
methods 286
properties 274, 284, 286–287

Layer Properties dialog box 96
Layers 283–287. See also Pages

adding 286
assigning shapes to 96–97, 285
deleting 96, 97, 286
described 96
hiding 96, 97, 287
identifying 284, 285
locking 96–97
pages compared to 96–97, 257
printing 372
removing shapes from 285
settings 286–287
SmartLayers 97

Layers collection 284, 286
Layers property 284
Layers section 436
Libraries

Automation 198
dynamic 410
of functions 383

Visio 202, 203, 204
Visio type 46–49, 212, 324

LIBRARIES folder 6
Line dialog box 150, 158
Line ends 150, 151, 157–158
Line Format section 79, 433
Line patterns 150, 151, 154–156
Line tool 108, 428
LinePattern cell 150
Lines

connecting 63
converting to arcs 63
drawing 292, 428
styles 138, 289

LineStyle property 289, 290
LineStyleKeepFmt property 290
LineWeight cell 141
LoadLibrary function 411
LOC function 101. See also Local

coordinates; PAR function;
PNT function

Local coordinates. See also
Coordinates; LOC function

converting 101
described 57
flipping shapes 64–65
for groups 69
origin of 57
page coordinates compared to 57
parent coordinates compared to

57, 58
pin 58
shapes in groups 73–74

Local formatting 138–139
Local formulas 27, 306
Local stencils 32, 33
Lock cells 78–79
LockCalcWH cell 63
LockFormat cell 80, 117, 149
LockHeight cell 72, 106
Locking. See also GUARD

function; Protecting
against flipping 66–68, 79
against rotation 66–68
against selection 66–68
control handles 78–79
dimensions 78
formats 80
groups 79



4 5 0 I N D E X

Locking (continued)
GUARD function compared to 79
height 79
layers 97
shapes 78–79
text formulas 114, 117, 121
unlocking 78–79
width 79

LockMoveX and LockMoveY cells 59
LockRotate cell 59
Locks 78–79
LockTextEdit cell 116, 117
LockVtxEdit cell 106
LockWidth cell 72, 121
LocPinX and LocPinY

cells 58, 67, 265.
See also PinX and PinY cells

Logical constants. See also Constants
Logical position constants 308, 438
Loops 220, 247–248
LpCmdLineArgs 325

M
Macro menu

displaying macro names on 44
displaying procedures on 43
not visible 393
running programs from 52, 363

Macros. See also names of specific
macros

displaying 44
launching 318
running 50, 362–365
Visual Basic for Applications

(VBA) 202–203, 204
writing descriptions 52

Macros dialog box 51–52, 363, 389
Macros submenu 389
MAIN.BAS 246
Master drawing window 34
Master icons 179, 184, 185
Master menu 34
Master object

as source of event 323
copyright of 32, 176, 367
creating 294–295
displaying ShapeSheet

spreadsheet for 25
dropping on pages 230, 232, 245
formatting 141–142, 143

getting 219, 231
identifying layers in 284
in Visio object model 206, 220, 231
instances of 31
methods 245, 286
pin position 232
properties 263, 274, 281, 284
references to 231, 232

Master patterns 150
Masters. See also Groups; Shapes

alignment boxes 170
connection points 168
control handles 236–237
copyright of 32, 176, 367
creating 31, 230
creating by grouping 68, 294–295
described 31
designing 31, 64, 66–67,

167–168, 199
dimensions 167–168
drawing scales 162–165
dropping 16, 31, 213, 364
editing 34, 35
editing formulas 26–27
getting 314
gluing 236–237
grid spacing 167–168, 169
grouping 295
icons 184, 185
instances of 16, 31, 33, 143
layers 283, 286
naming 184–185, 259
packaging 176
reusing 31
scale 181–183
ShapeSheet spreadsheet for 25
snap-to-grid 167–168
stencils 199
styles 33
testing 180–183, 199
text 130
unique IDs 312

Masters collection
errors 227
getting 231, 314
iterating 227
references to objects in 219

Masters property 231
Mathematical operators. See symbols

of specific operators

MAX function 120–121, 123
Member shapes (component shapes)

connection points 69
coordinates 73–74
displaying 49
formatting 80
getting 250
pin 73–74

Menu cells 89, 91
Menu items 346–348
Menu object 334, 336
MenuItem object 334, 336
MenuItems collection 206, 336, 337
Menus. See also names of specific menus

adding 346–348
cascading 336
deleting 351
hierarchical 336, 351
identifying 350
running programs from 365, 389
shortcut menus 87, 88–92,

336, 346
Menus collection 218, 337
MenuSet object 336, 344–346
MenuSets collection 206, 218, 337
Merging shapes 68, 70.

See also Combined shapes;
Groups; Multishapes

Methods. See also names of
specific methods

arguments in C/C++ 405–406
declaring variables for arguments

222
default 223
described 223
exposing through Automation 207
return values 223, 227,

392, 403–405
syntax 223
Visual Basic properties compared

to 396
Microsoft Access databases 246, 275
Microsoft Excel 202
Mid function (Visual Basic) 389
MIN function 123
MiniHelp property 350
Miscellaneous section 85, 116, 433
Modeling with Visio 12
Modules 43–45, 49



I N D E X 4 5 1

MODULUS function 127
MoveTo row 305
Moving shapes 57, 58–59, 302–303
MsgBox statement 213
Multiple Geometry sections.

See also Paths
Multishapes. See also Combined

shapes; Paths
combining shapes into 88–89, 108
creating 88–89
paths 70, 304
shortcut menu formulas 88–92

N
Name property

access methods for 398
Addon object 391
Document object 224
getting 278
Layer object 284
Page object 257
return values 256, 259, 288
Style object 291
text strings 274

NameID property
return values 259, 260, 268, 390
text strings 274

Naming. See also under names of
specific objects

cells 263, 264
commands 89
connection points 5, 111–112
Connections.Row cell 5, 111–112
custom properties 93
documents 209–210
masters 184–185, 259
pages 257
styles 148–149

Nested groups 76. See also Groups
NETDB 21
NetDB1 module 246
NETDIAG.EXE 246
NetInfo table example 246–247
Network diagram program example

21, 246–251
Network equipment shapes 17
NETWORK.MDB 246–247
New Master command 164
New Master dialog box 34

NoCtrlHandles cell 85
NoFill cell 59–60, 70
Nonperiodic splines 425–426.

See also Splines
NoShow cells 59–60, 89–90, 92
NOT function 90
Notification sinks. See Sink object
NUDGE.EXE 302–303
Null string ("") 266, 387
Number-unit pairs 29
Numbers 275. See also Constants;

Units of measure; Variables

O
ObjBehavior cell 103–104
Object Browser 48–49
Object linking and embedding.

See Automation
Object model (Visio) 206–213,

380–381
Object pointers 405–406
Object references. See also names of

specific objects or collections;
References

compound 224–225
concatenating 224–225
errors through 221, 228
examples of 209–210, 211–213
invalid 221, 228
releasing 218–219
returned by methods 403–404
storing 214
to collections 218–219
to object variables 222

Object types
compatibility 393
conflicts with 214
defining 381, 392
described 46–47
listing 47
using 212

Object variables. See also names of
specific variables

declaring 214, 216, 221, 222
getting objects using 214
global 214, 221
handling events using 320–321
invalid object references 221
lifetime of 228
local 214, 221

module-level 214
releasing objects 221
restrictions on 228
scope of 228
using data types 222

Objects. See also names of
specific objects

accessing through properties
208–209

as components 4
creating 199, 210–213
error properties 227–228
exposing through Automation

198, 205, 207, 396–397
extensible 217
getting 217–218, 227, 381–382
in Visio object model 206
ordinal position 218–219
paths to 208
position relative to parent 57
references to 208–209
releasing 214, 221, 382

ObjType cell 103, 104
Office floor plan examples 19
OLEObjects collection 374
On Error statement 226, 388
One-dimensional shapes.

See 1-D shapes
OneD property 299
Online help 6, 360, 361
Open dialog box 187, 191
Open Document Management API

(ODMA) support 5
Open method 254, 294–295
OpenEx method 255
OPENFILE function 317
OPENSHEETWIN() function 317
OPENTEXTWIN() function 317, 318
Operations command 68, 76
Operations submenu 70
Operators. See names of

specific operators
Order of evaluation (for events) 317
Order of pages 257–258
Organization chart example

240–242, 244–245
Organization Chart stencil 236
ORGCHART 240–242, 244–245
ORGCHART.BAS 244–245
Oven shape 71–72



4 5 2 I N D E X

P
Padlock symbol 78–79
Page Added event 331
Page coordinates. See also Coordinates

calculating 244
flipping shapes 64
of pin 58
origin of 57
specifying 232

Page object. See also ThePage shape
as source of event 323
conflicts with 214
in Visio object model 206,

231, 256, 280
index of 389–390
methods

Add 280, 286
DrawLine 292
DrawOval 292
DrawRectangle 292
Drop 232, 293, 405
Paste 293
Print 234

properties
Application 208
Background 257, 280
BackPage 257, 280–281
Document 208
Name 274
PageSheet 258, 263, 281
Shapes 259

Shapes collection 261
Page Properties section 436
Page sheet 263. See also ThePage shape
Page units 29, 160, 161
PageAdded event 324, 328, 330
PageCompute subroutine example 244
PageDeleted event 324
Pages

active 254
adding 280
background 257–258, 280–281
cells 435–436
coordinates 57, 244
counting shapes on 261
creating 231
data for 258
displaying 317
displaying ShapeSheet

spreadsheets 25

foreground 257, 258
formulas for 258, 281
getting 256–258
grids 169
identifying layers in 284
indexes 435–436
information about appearance 258
layers 96–97, 283
location of shapes 57, 58, 243–244
naming 257
order of 257–258
printing 234
properties 284
sections 435–436
settings 281–283

Pages collection
in Visio object model 231
iterating through 257–258
properties 208
references to objects in 219

Pages property 208
PageSheet property 258, 263, 281
PagIndex 389
PAR function 101. See also LOC

function; Parent
coordinates; PNT function

Paragraph Format section 79,
116, 117, 433

Paragraph section 117
Parent coordinates. See also 

Coordinates; PAR function
component shapes 73–74
described 57
flipping shapes 64–65
grouped shapes 69
resizing shapes 73–74

Parsing
command strings 389
storing formulas in parsed form 274

Paste method 293
Path objects 5
Path property 235, 256, 274
Paths

displaying 89
multiple 208, 304
multishapes 70

Pencil tool 63
Periodic splines 425–426
Persistable property 326

Persistent property 326
PersistsEvents property 326
Piano shape 78
Pin

and rotation tool 65, 66, 67
changing 58, 65, 67
coordinates 58
described 58
Drop method arguments 232
effects of flipping or rotating

shapes 64–67
effects of moving shapes 58–59
location in shapes 58
location on grid 67
location on line ends 157
moving 59
of grouped shapes 73–74
parent shapes relative to 64, 65
placement of 248
positioning shapes 232
protecting formulas 59
rotating shapes using 64–65

PinX and PinY cells. See also LocPinX
and LocPinY cells

changing values 59, 67, 299
coordinates 58
effects of grouping 69
effects of rotating 174
example formula 223
gluing to 239
protecting formulas in 59, 79

Placeable shapes 103, 104
PLAYSOUND function 317–318
PNT function 101. See also

LOC function; PAR function
Portable code. See Code
Position master in Organization Chart

stencil 236
PosX and PosY functions

241–242, 245
PreserveMembersFlag argument 285
Print method 234
Private procedures 43
Programming errors. See Errors
Programming for Visio 20–21. See also

names of specific programming
languages



I N D E X 4 5 3

Programs. See also names of specific
programming languages; Code

16-bit and 32-bit 395
add-on 202–203, 226, 388
binding to cells 363–365
context 226, 388
conventions used 210
copyright of 32, 176
data storage in 201
environment 226, 388
including interfaces with 200
including templates or stencils

with 200
instance of Visio in 4
interaction between programs 391
planning 198–204
running 362–365
standalone 202–203, 214
storing 366, 394
usability 200–201, 226,

333, 359, 388
PROGREF.HLP 6
PROGRESS.FRM 244
Project Explorer

changing default styles 288
changing document properties 217
code behind events 319
exporting projects 49
removing items 50
using 42, 43

Prompt cell 275
Properties. See also names of specific

properties; Custom properties
accessing objects through 208–209
ambient 373
arguments to 218, 223
concatenating 224–225
default 218, 224
exposing through Automation 207
getting 222–223, 268–271
identifying shapes using 259–260
read-only 222, 255, 256
read/write 222
references to objects 208, 218–219
return values 275
setting 222–223
storing values 278
text string maximum sizes 274
user-defined 264–265, 312–313
write-only 222

Properties command 95
Properties dialog box 33, 152, 154
Property line example 199
Proportional resizing 71–72, 73–74.

See also Resizing
Protect Document command 194
Protecting. See also GUARD

function; Locking
alignment boxes 170
code 50
custom properties 95
formatting 149
formulas 79, 302
group formatting 80
height and width 79
pin formulas 59
stencils 33, 194
styles 149
templates 194

Protection section 72, 78–79,
106, 116, 117, 434

Public procedures 43
PutName method 398

Q
QUERY.BAS 277
QueryInterface method 402
Quit method 382, 386
Quotation marks (") 30, 233, 301

R
Range of eight 162–164
Range shape 71–72
Read-only files

opening files as 37, 38–39, 255
saving files as 40, 194, 231

Read-only properties 222, 255, 256
Read/write files 38–39
Read/write properties 222
ReadOnly property 256, 275
Rectangle shapes 63
References. See also Cell references;

Object references
invalid 228
to control handles 84
to formulas 27–28
to interfaces 396–397
to Master objects 232
to object variables 219

to ShapeSheet cells 27–28
to type libraries 46

Release method 402
Releasing variables 221
ReQuery procedure 277
ResizeMode cell 72
Resizing

1-D shapes 107
3-D boxes 74–77
effects on curves 63
effects on vertices 57, 107
formulas for 15, 62, 108, 199
planning for 60
proportional 71–72, 73–74
shapes 60–63
shapes in groups 71–77
text 120–123

Result method 265–266
Result property 301, 302
ResultInt method 265
ResultInt property 302
ResultIU method 265–266, 278
ResultIU property 302
Results, replacing formulas with

301–302
ResultStr method 265, 275
ResultStr property 302
Retrieving objects 217–218. See also

getting under names of specific
objects

Return values 222. See also under
names of specific methods or
properties

RGB color values 144, 146
Road sign shape 130
Rotating

1-D shapes 102
2-D shapes 102
alignment boxes 169–170
effects on local coordinates 58–59
effects on ShapeSheet

spreadsheet 64
effects on text 125–126
guides 173
planning for 60, 66–67
shapes 65–67, 102, 124
text 124–126
text blocks 135–136

Rotation tool 65, 67, 158
Routable connectors 103–104, 112



4 5 4 I N D E X

Row property 284
RowCount property 307
Rows. See also names of specific rows

adding 302, 304
deleting 304, 305–306
iterating through 307
position in ShapeSheet

spreadsheet 300
retrieving formulas by 300
tags 304–305
types 305, 306

RowsCellCount property 307
RowType property 306, 437
Ruler & Grid section 167, 436
Rulers 57
Run Macro button

(Developer toolbar) 25
Run method (Addon object) 391
Run mode 370
RUNADDON function 87, 318,

363–365, 389–390
RUNADDONWARGS function 364, 390

S
S-connector 102
SAMPLE APPLICATIONS folder 6
SAMPLES.VST 225
Save method 234–235
SaveAs method 213, 234, 235, 256
Saved property 235, 256, 275
SaveToFile method 355
Scaled drawings. See also

Drawing scales
converting coordinates to

inches 292
font size in 122
templates for 37

Scope of procedures 43
Scratch section

cell references and indexes in 434
for grid spacing 169
references to 76
user-defined cells compared to

30, 312
Screen updating 247–248
SectionExists property 302
Sections. See also names of

specific sections
adding 302, 304
deleting 304, 305–306

for pages 435–436
for shapes 430–435
inherited 306–307
iterating through 307
position in ShapeSheet

spreadsheet 300
retrieving formulas by 300

Segments 306
Select method 296, 297
SelectAll method 297
Selection handles

gluing to 239
of 1-D shapes 100
of 2-D shapes 100
of text blocks 118
resizing shapes using 60

Selection object 295–298, 323
Selection property 295
SELSTENC.FRM 220, 282–283, 227
Set statements 209–210, 222, 381
SetBegin and SetEnd methods

247, 299
SetCenter method 299
SetCustomMenus method 341, 355
SetCustomToolbars method 341, 355
SetEnd method 247, 299
SETF function 88, 91, 318
SetResults method 265
Setup programs included in

solutions 360
Shape data 206
Shape Help command 177–178
Shape IDs 28. See also Unique IDs
Shape object

as source of event 323
copying 223
described 259
dropping 294–295
formulas for 263
getting 259–260
in Visio object

model 206, 207, 219, 259, 262
indexes 218, 430–435
methods

AddNamedRow 312
AddRow 304
AddSection 304
Copy 293
Cut 293
Delete 293

DeleteSection 305
Drop 247, 248, 294
Duplicate 293
Item 260
ResultIU 278
SetBegin 247, 299
SetCenter 299
SetEnd 247, 299
UniqueID 313–314

properties
Cells 223, 237, 263, 281, 299
Characters 233, 262
Connects 267–268
Data1, Data2, Data3 278
FillStyle 289
FillStyleKeepFmt 290
FromConnects 267
GeometryCount 307
LineStyle 289
LineStyleKeepFmt 290
Name 259, 274, 278
NameID 259, 260, 274, 390
OneD 299
RowCount 307
RowsCellCount 307
RowType 306
SectionExists 302
StyleKeepFmt 290
Text 213, 222, 233, 248–249,

262, 274, 278
TextStyle 289
TextStyleKeepFmt 290
Type 260, 261
UniqueID 260, 274

representing page formulas 258
type 260

SHAPE SOLUTIONS folder 6, 101
Shape Transform section. See also

names of specific cells
cell references and indexes in

434, 436
coordinates in 57, 59
displaying 25
drawing scales 165–167, 169
effects of grouping shapes 68–69
effects of resizing shapes 72, 121
effects of rotating shapes 58
grids in 169
height 57, 79
orientation of shapes 64



I N D E X 4 5 5

pin 58, 65, 67
protecting 79
shape position on page 57
text size 121
width 57, 79

ShapeAdded event handler 318–319,
321, 322, 323–324

ShapeData object 206
ShapeDeleted event 328, 330
Shapes. See also names of specific shapes

or actions; Geometry; Masters;
Multishapes; SmartShapes

aligning 168, 173
arrangement on page 243–245
as components 16–17
assigning to layers 97
asymmetrical 169–170
behavior of 12, 15
color 144–146, 179, 180
combining 67–70, 88–89
connecting lines 63
connection data 270
connection points 67
controlled by external programs 12
controlling behavior 199
coordinates. See Coordinates
copying 293, 297
counting on page 261
creating 63, 199, 230, 292
data associations with 12, 18–19,

259–262, 311–314
default behavior 15, 16
deleting 293
designing 13

documentation 60, 176
for data 19
for flipping and rotating

60, 66–67
grid spacing 167–168
transforming behavior 63, 99

dragging into drawing window
169–170

dropping 292.
See also Drop method

filling 59–60, 70
flipping 64–67
geometry of 13, 59–60
getting 259–260, 314

glued 109–111, 235–242, 268
grid spacing 169
grouped shapes

connection points 69
coordinates 73–74
creating 67–70
formatting 80
getting 250
pin 73, 74

information associated with 92
labels 248–249, 250.

See also Text blocks
layers 96, 97, 283–287
linking to help files 16
listing 375–378
location on drawing page 57, 58–59
locking 78–79
moving 58–59, 302–303
multiple paths 70, 304
names 259
origins 65
packaging a solution 16
parameters 13
performance on different

systems 179–180
pin. See Pin
placeable 103
planning 176
positioning 243–245
print capabilities on different

systems 179, 180
programming 12
resizing 60–63, 107.

See also Resizing
rotating 65–67, 102, 124
rounding corners 63
saving as masters 33
selecting 65–67.

See also Selection object
size 122–123
snapping to grid 167–168, 169–170
stacking order 270–271
testing 180–183
text. See Text
unique ID 259–260
unlocking 78–80
usability 176

width
protecting 121
relation to height 60
text 127, 131–132

Shapes collection
counting shapes in 261
getting 259, 277
getting shapes in 250
methods 314
of Page object 261
OLEObjects collection

compared to 374
order of items 259
references to shapes in 219
Selection object compared to 295

Shapes property 259
ShapesCount function 261
ShapeSheet cells

constants in 430–435
formulas in 26–27
naming 263, 264
referencing 27–28

ShapeSheet formulas
colors 146
custom 117
custom properties 94
described 12, 14, 26
for connectors 102, 108
for resizing shapes 15
position 56
size 15, 56, 60, 62
units of measure in 29

ShapeSheet sections 25–26, 430–435
ShapeSheet spreadsheets

described 14
displaying 24–25
editing in 3
effects of flipping or rotating

shapes 64
effects of grouping 68–69
indexes 299, 300, 430–435,

435–436
protecting 78–79
text in 115–116, 437

ShapeSheet window
adding sections to 26
described 24, 25–26
editing in 3
opening 317



4 5 6 I N D E X

ShapeSink object 322
Shortcut menus

adding items 346
commands in 87, 95
hierarchical menus compared to 336
running programs from 363
ShapeSheet cells 27

Show Arms command 89, 90
Show Master Shapes command

(Window menu) 143
Show ShapeSheet command 25
SHOWARGS.EXE 325–326
ShowInMenu macro 44, 52
ShowMenus property 351
ShowPageConnections macro 271–273
ShowStatusBar property 351
ShowToolbar property 338
Sink object

defining 327–328
described 326
handling events using 321–322, 407

Sink shape 71–72
SinkObj variable 322
Size & Position command (Shape

menu) 59, 65, 158
Smart connectors. See Connectors
Smart formulas 62, 102, 124–125.

See also Formulas
SmartLayers 97
SmartShape Wizard

adding connectors to shapes 105
adding control handles 118–119
adding formulas to 120
font size 122–123
text behavior 124–125

SmartShapes 2, 14–15
Snap & Glue Setup dialog box 109
Snap-to-grid 67, 167–168, 169–170
Solutions

components of 16
designing 12
developing for different systems

179–180
packaging 16, 176
planning 198–204

Sounds, playing 317–318
Source code. See names of specific

programming languages; Code
Special dialog box 262
SplineKnot row 426–427

Splines
adding rows to Geometry section

309
B-splines 56, 424
control points 424, 425
control polygon 425, 428
creating 424, 427–428
data in ShapeSheet

spreadsheet 426–427
degrees 424
described 56
freeform tool 56
nonperiodic 425–426
periodic 425–426

SplineStart row 426–427
Stacking order of shapes 270–271
Standalone programs 202–203, 214.

See also Programs
Standalone stencils 33.

See also Stencils
Startup programs 362, 389.

See also Programs
StartupPaths property 361, 391
Static glue 109–110
StatusBar object 206, 338, 344–346
StatusBarItems collection 218,

337, 339
StatusBars collection 218, 337, 338
Stencil object 294–295
Stencil Report Wizard 226, 243
StencilPaths property 361
Stencils. See also Documents;

masters; Templates
adding new masters to 33
arranging icons in windows 186
color 145
copyright 32, 176, 367
creating 32, 184–188
described 16, 33
designing 184–188
drawing file 32
dropping Shape objects into

294–295
editing 33, 186–188
file formats 37–39
file size 366
file summaries 186
getting 230–231
including with programs 200
installing 193

layers 96
local 3, 31
masters 199
opening 31, 32, 33, 39,

294–295, 387
packaging 176
performance on different systems

179–180
protecting 33, 194
saving 37, 39, 50
standalone 16, 31
storing 361, 366
styles 16, 147–149
templates compared to 230
testing 187–188
usability 186

STNDOC.EXE 226, 227, 243
Stove shape 71–72
StrComp function (Visual Basic) 389
Style command (Format menu)

141, 142
Style dialog box 148
Style object

as source of event 323
in Visio object model 288
methods 290–291
properties 274, 288, 291

StyleKeepFmt property 290
Styles

applying to shapes 80,
138–140, 289

changing attributes 291
combining attributes 139
consistency 147–149
copying between documents 140
creating 140, 141, 290–291
default 139
deleted 148
described 288
editing 141–143
fills 138, 289, 290
guidelines for 147
identifying 288
in stencils 16, 142–143, 147–149
in templates 147–149
lines 138, 289
naming 148–149
on toolbar 139
protecting 149
reformatting 141–158



I N D E X 4 5 7

removing 148
storing 138
text 138
usability 147–149

Styles property 288
Subject property 255, 274
Subtract command 70
Swimming pool shape 160

T
Tab settings 371, 437
Table shapes 162–163
Target property 332
TargetArgs property 328, 332
TemplatePaths property 361, 387
Templates. See also Documents;

Stencils
ActiveX controls in 200
color 145
controls in 200
copyright 32, 176, 367
creating 35–37, 189–193
creating documents from 231, 387
described 3, 16
designing 159, 189–193
drawing pages 169
drawing scales 162
editing 189–193
elements of 35–36, 189
file size 366
for space plans 200
glue behavior 109
grids 167, 169
including with programs 200
installing 193
layers 96
linking to help files 16
opening 37, 39, 386
packaging 176
performance on different systems

179–180
placeable shapes in 104
protecting 194
routable connectors in 104
saving 37–39, 50, 231
scaled drawings 37
stencils compared to 230–231
storing 360, 361, 366
styles 147–149
testing 191–193

usability 159
workspace lists 36, 37,

189, 190–193
Text

adding 233
as formula output 131–132,

133–134
behavior 114, 120–121,

124–125, 129
centered on shape 127
color 27
counterrotation 125–126, 127–128
default text 114, 116
displaying 18, 124–125, 131–132
editing 120–123
effects of flipping and rotating

125–126
effects of resizing shapes 120–123
formatting 233
getting 262, 274–275
gravity formulas 124–125
in groups 130
in master patterns 151
in Special dialog box 262
level 124–125, 127–129
line breaks 233
locking 114
obscuring shapes 127–129
of 1-D shapes 118, 127
offsetting from shapes 124–126,

128–129
orientation 124–126
pin 114
positioning 118, 124–126,

128–129, 233
rotating 124–126, 135–136
selection handles on 118
shape size 120–121, 122
short shapes 127
size of 114, 118, 120–121, 233
storing 274–275
strings 274, 275
styles 138
subsets of 233, 251
tabs 437
testing 135–136
width 127

Text Block Format section 79,
116, 117, 434

Text block tool 118

Text blocks 114, 115–116, 118–119
Text Field command 131
Text fields 131–132
Text Fields section 131–132, 262, 435
Text formulas

adding text to shapes 233
locking 114
offset from shape 129
orientation 125–126
protecting 117
size of text blocks 120–121
testing 135–136

Text property
example code 211–214
field codes in 262
getting 213, 222, 278
labeling nodes 248–249
setting 222, 233
text strings in 274

Text strings 274, 275
Text tool 118
Text Transform section

adding 115
cell references and indexes in 435
control handles 119
counterrotation of text 125–126,

127–128
default formulas 127–128
default values 115
text blocks 114, 127–128, 233
text orientation 125
users affecting 117

TEXTHEIGHT function 120, 121
TextStyle property 289, 290
TextStyleKeepFmt property 290
TEXTWIDTH function 120–121
ThePage shape. See also Page sheet

cell references 28
described 244, 281
ThePage!DrawingScale 165
ThePage!PageScale 165

TheWindow_SelectionChanged
event handler 376–378

ThisDocument object
accessing through properties 208
code 21, 319–320
default styles 288
described 41, 43
Document object compared to

216–217



4 5 8 I N D E X

ThisDocument object (continued)
dragging and dropping 49
in Visio object model 206, 217
properties 208
references to objects in 218
running programs with events 362
setting custom interfaces 342
setting custom menus 341
using 216–217

Title property 255, 274
ToCell property 270
Token ring master 86
Toolbar buttons 348–349
Toolbar items 350
Toolbar object 337, 338
Toolbar set 345–346
ToolbarItems collection 206, 218,

337, 338
Toolbars

default 344
in Visio object model 337–338
Microsoft Office 344
running programs from 365

Toolbars collection 218, 337
ToolbarSet object 206, 338, 344–346
ToolbarSets collection 337
ToolbarStyle property 351
ToPart property 269–271
ToSheet property 268, 271
Transistor symbol 67
Trigger method 332
Trim command 70
TxtAngle cell 125–126, 129
TxtPinY cell 125–126
TxtWidth cell 127, 129
Type libraries 46–49, 212, 324.

See also Libraries
Type property 260, 261, 392

U
UI object. See also Interfaces

context for 345–346
getting 335, 344
in Visio object model 334
status bars 218
toolbar sets 218

Ungrouping 68–69. See also Groups
Union command 68, 70
Union method 297, 298
Unique ID method 313–314

Unique IDs. See also Shape IDs
as arguments 314
database applications 274, 313–314
deleting 314
duplicating 312
generating 260, 312, 313–314
getting 260
of masters 312, 314
of shapes 259–260, 313–314
storing 260

UniqueID property 260, 274
Unitless cells 29
Units of measure 29, 266.

See also Values
Universal connectors 103
UpdateAlignBox cell 85
UpdateUI method 355
URL for Visio Web site 6
Usability

background pages 257
drawing scales 160–161
grids 167
programs 200–201, 226, 333, 359
shape behavior 64, 176
shape names 184
shape styles 147–149
stencils 186
templates 159

USE function 150
User actions. See names of

specific actions
User forms 40, 45–46
User interface. See Interfaces;

UI object
User section 264–265
User-defined cells

described 30
getting 264–265
Scratch cells compared to 312
setting values of 88

User-Defined Cells section 30,
106, 435, 436

User-defined properties 264–265,
312–313.
See also Custom properties

V
V2LMSG_ENUMADDONS message

412–413, 414
V2LMSG_ISAOENABLED message 414

V2LMSG_RUN message 412, 415–416
Value cells 95, 264
Values. See also Formulas; Numbers

angles 132
calculating 27
declaring variables 222
displaying 26
returned by methods 403–405

Valve shapes 170
VAO.H 411–412
VAO_ENABLEALWAYS 413
VAO_ENABLEDYNAMIC 414
VAO_INVOKE_LAUNCH 414, 415
VAO_NEEDSDOC 413
VaoGetGIO function 388
VaoGetObject function.

See also GetObject function
assigning instances of Visio 382
calling 403
code sample 383
errors returned by 382
in Visual Basic for Applications

(VBA) 393
VaoGetObjectWrap function 398
VAORC_L2V_ENABLED 414
VAORC_L2V_MODELESS 416
VAORESTRUCT 413
VAOV2LSTRUCT 325
Variable grids. See Grids
Variables. See also names of specific

object variables
data type 222
declaring 222, 320–321
double 265, 275
global 44
local 44
object

declaring 214, 216, 221, 222
getting objects using 214
global 214, 221
handling events using 320–321
invalid object references 221
lifetime of 228
local 214, 221
module-level 214
releasing objects 221
restrictions on 228
scope of 228
using data type 222



I N D E X 4 5 9

static 44
variant 265, 275

VARIANT data structure 406
Variant data type in Visual Basic 222
Variant variables 265, 275
VB EVENT SAMPLE.CLS 329
VB EVENT SAMPLE.FRM 325–326
VB folder 393
VB SOLUTIONS folder 6, 225,

244–245, 246, 325–326,
329, 383–384, 384–386

VBA. See Visual Basic for Applications
(VBA)

VBA ACTIVEX SAMPLE.VSD 376–378
VBA EVENT SAMPLE.VST 319–320
VBA SAMPLES.VST 209–213, 271,

288–289, 310–311, 348–349,
353, 354

VBA SOLUTIONS folder 6,
21, 225, 271, 288–289,
310–311, 319–320, 321,
322, 348–349, 353,
354, 376–378

VBA WITHEVENTS SAMPLE.VSD

321, 322
VBstr helper class 398, 406
VDLLMAIN.C 411
Vertices

adding rows to Geometry
section 309

described 56, 57
effects of moving shapes 57
formula evaluation 57, 58–59
location of 56
of 1-D shapes 100–101
of arcs 63, 422–423
relation to other shapes 56
value of 57, 58

VisActCodeAdvise 332
VisActCodeRunAddon 325, 332
VisAPI 381
VisArcTo constant 309
VisBegin and visEnd constants 270
VisBeginX and visBeginY

constants 270
VisBold constant 251
VisBottomEdge constant 270
VisCenterEdge constant 270
VisCentimeters constant 266
VisCharacterStyle constant 251

VisConnectionPoint constant 270
VISCONST.BAS 324, 381, 392, 393, 429
VisControlPoint constant 270
VisDeselect constant 296
VisDrawing constant 392
VisDrawingUnits constant 266
VisEllipticalArcTo constant 309
VisEndX and visEndY constants 270
VisError constant 382
VisEventProc procedure 327–330,

331, 332, 407, 408
VisEvt 324
VisEvtAdd 324
VisEvtDel 324
VisEvtIDMostRecent 332
VisEvtPage 324
VisEvtShape 324
VisGetGUID constant 260
VisGuideX and visGuideY

constants 270
VisIcon constant 392
Visio Automation Reference 207
Visio Copy command 334
Visio Edit menu 334
Visio file paths 360–361
Visio folders, installing

solutions in 360–361
Visio libraries (.VSL). See also Libraries

add-ons 410, 412–416
advantages of using 410
architecture of 411–412
described 202, 203, 411–412
designing 40
developing with C/C++ 410
disadvantages of using 410
executable programs compared to

202, 203, 204, 410
macros compared to 202, 204
running programs as 389
storing 361
type 46–49, 212, 324, 392, 393

Visio object model 206–213,
380–381. See also under names
of specific objects

Visio type libraries 46–49,
212, 324, 392, 393

Visio Web site 6
VISIO.H 398, 400, 401–402, 403
VisioLibMain function 411–412
VISIWRAP.H 398, 400

VisLayerName constant 287
VisLayerVisible constant 287
VisLeftEdge constant 270
VisLineTo constant 309
VisMiddleEdge constant 270
VisOK constant 382
VisPageUnits constant 266
VISREG.BAS 382–383, 393, 403
VisRightEdge constant 270
VisRowComponent constant 305
VisRowNone constant 438
VisRowVertex constant 305
VisSectionCharacter constant 302, 304
VisSectionFirstComponent

constant 302, 304, 309
VisSectionLastComponent

constant 309
VisSectionNone constant 438
VisSectionObject constant 304
VisSectionParagraph constant

302, 304
VisSectionRowComponent

constant 304
VisSectionRowVertex+0 constant 304
VisSectionRowXForm1D constant 304
VisSectionTab constant 302, 304
VisSelect constant 296
VisSheet constant 392
VisStencil constant 392
VisTagComponent constant 309
VisTagMoveTo constant 309
VisTagSplineBeg constant 309
VisTagSplineSpan constant 309
VisToolbarLotusSS argument 338
VisTopEdge constant 270
VisTypeForeignObject constant 261
VisTypeGroup constant 261
VisTypeGuide constant 261
VisTypePage constant 261
VisTypeShape constant 260
Visual Basic. See also names of

specific functions
as Automation controller 198
assigning variables 222
C/C++ compared to 201, 202–203
code samples 393
compatibility with Visio 393
Count property 218, 219
CreateObject function 381, 386



4 6 0 I N D E X

Visual Basic (continued)
creating Application objects

384–386
creating drawings 210–213
customizing interfaces from 334
declaring variables 222
document names 209, 383–384
error functions 227–228
For loops 220
getting instance of Visio 383–384
migrating from VBA 393–394
programming for Visio 40, 41,

198, 202, 225, 379–394
properties 396
releasing objects 221, 382
Variant data type 222
VBA compared to 198, 201,

202–203, 393–394
Visual Basic Editor

button on Developer toolbar 25
changing default styles 288
returning to Visio window 43
running programs from 50–52
saving projects 50
starting 42

Visual Basic for Applications
(VBA). See also names of
specific functions

Automation compared to 4
compatibility with Visio 393
controls 45–46
Controls Toolbox 45–46
customizing 50
customizing interfaces from 334
locking 43
macros 202–203, 204
migrating from Visual Basic

393–394
modules 40–41, 43–45, 49
object references in 393
programming for Visio 40–52,

202, 225, 393
Project Editor 319
projects

contents 41
described 318
descriptions of 43
dragging and dropping 49
exporting items 49

managing 49–50
naming 43
removing items 50
saving 43, 50
storing 40–41, 366

running 362–365
running programs 50–52
running with Visio 208
storing programs 366, 393–394
transferring code to 393–394
user forms 40–41, 45–46, 49
Visual Basic compared to 198,

201, 202–203, 393–394
.VSD 37, 39. See also Drawing files
.VSL 40, 202. See also Libraries
.VSS 32, 33, 37, 39. See also Stencils
.VST 36, 37, 39. See also Templates
.VSW 36, 37, 39. See also

Workspace: lists
VVariant helper class 398, 406

W
WalkPreference cell 110
Wall shape 172
Web site for Visio 6
While loops 247–248.

See also Count property
Width cells

effects of grouping 69
effects of stretching shapes 57
protecting 79
retrieving 263
setting depth perspective 77

Width formulas 258
Width-height box 57
Window object

as source of event 323
in Visio object model 206
methods 223, 293, 297
properties 255, 295, 392

WindowHandle32 property 385
Windows

activating 223
handles 385
managing 226

Windows desktop, running Visio
from 202, 203

Windows Explorer, running Visio
from 202, 203

WithEvents (VBA keyword) 320, 321
Word balloon shape 83, 84, 85–86
Workspace

lists 36, 37–39, 189, 190–193
opening files as 39
saving files as 37–39

World Wide Web site for Visio 6
Wrapper classes 397
Write-only properties 222.

See also Properties

X
X, Y coordinates. See Coordinates
XBehavior and YBehavior cells 85, 119
XDynamic and YDynamic

cells 86, 119
XGridDensity and YGridDensity

cells 167
XGridSpacing and YGridSpacing

cells 167

Z
Zero points 57


	Preface
	Who this book is for
	What this book is about
	Using Visio shapes to create solutions
	Using SmartShapes technology
	Writing programs to control Visio

	New features for developers
	Sample shapes and code
	Online reference material
	Conventions

	Part I  The Visio Development Environment
	Chapter 1  Introduction
	Modeling with Visio
	Drawing with objects
	SmartShapes technology
	Shapes as components

	Integrating data with shapes
	Automating Visio

	Chapter 2  Tools for creating solutions
	Working with the ShapeSheet window
	Displaying ShapeSheet sections
	Entering and editing formulas
	Referencing another cell in a formula
	How units are expressed in a formula
	ShapeSheet sections for writing formulas

	Creating masters and stencils
	Opening a stencil
	Saving shapes as masters on a stencil
	Working with masters on a stencil

	Creating templates
	Opening and saving Visio documents
	Opening a Visio file
	Saving your work

	Programming Visio VBA
	Getting started with VBA
	Inserting modules and class modules
	Inserting user forms
	Using the Visio type library
	Managing a VBA project
	Saving a VBA project
	Running a VBA program



	Part II  Developing Visio Shapes
	Chapter 3  Controlling shape size and position
	Describing shape geometry
	Describing shapes in a coordinate system
	Positioning shapes on a page
	Hiding shape geometry

	Controlling how shapes stretch and shrink
	Resizing a shape in one direction
	Creating curved shapes that resize smoothly

	Controlling how shapes flip and rotate
	How flipping affects a shape
	How rotating affects a shape
	Designing shapes that flip and rotate

	Grouping and merging shapes
	Grouping and ungrouping shapes
	Merging shapes

	Resizing shapes in a group
	Defining the resizing behavior of grouped shapes
	Resizing shapes in only one direction
	Creating a 3- D box: an example

	Protecting against unwanted changes
	Using locks to limit shape behavior
	Protecting formulas
	Protecting the formatting of shapes in groups


	Chapter 4  Enhancing shape behavior
	Making shapes flexible with control handles
	Adding and defining a control handle
	Setting a control handle s behavior
	Setting a control handle s anchor point

	Defining shortcut menu commands
	Controlling shape geometry: an example
	Checking commands on the shortcut menu
	Hiding and showing commands

	Working with custom properties
	Defining custom properties
	Adding a Properties command to a shortcut menu
	Using custom properties with a database

	Assigning shapes and masters to layers

	Chapter 5  Making shapes connect: 1-D shapes and glue
	Understanding 1-D and 2-D shapes
	Converting 1-D and 2-D shapes
	1-D shape gallery

	Creating routable and other 1-D connectors
	Creating routable connectors
	Creating an angled connector: an example
	Creating a height- based 1-D shape: another example

	Controlling how shapes connect
	Defining a shape's glue behavior
	Adding connection points


	Chapter 6  Designing text behavior
	About text in shapes
	Defining a text block in the ShapeSheet window
	Viewing text attributes in the ShapeSheet window

	Protecting text formulas
	Controlling the text block s position
	Resizing shapes with text
	Controlling text block size
	Basing shape size on the amount of text
	Basing shape size on text value
	Changing the font size as a shape is resized

	Controlling text rotation
	Gravity formulas
	Counter- rotation formulas for level text

	Constraining text block size: some examples
	Constraining the width of a level text block
	Controlling the width of an offset level text block

	Controlling text in a group
	Displaying and formatting formula results
	Displaying a shape's width in different units
	Displaying normalized angular values

	Formatting strings and text output
	Using the FORMAT function
	Displaying formatted custom properties

	Testing text block formulas

	Chapter 7  Managing styles, formats, and colors
	Working with styles in the drawing page
	Setting default styles for a drawing
	Creating a new style

	Modifying the formats of shapes and masters
	Editing a style to reformat shapes
	Reformatting masters in a standalone stencil
	Reformatting all instances of a master

	Managing color in styles, shapes, and files
	Standardizing color palettes across documents
	Specifying color as a ShapeSheet formula

	Using styles in stencils and templates
	Keeping styles consistent across files
	Using naming convions for styles

	Protecting local shape formats
	Creating custom patterns
	Developing custom fill patterns
	Developing custom line patterns
	Developing custom line ends


	Chapter 8  Scaling, snapping, and aligning
	Choosing an appropriate drawing scale
	Choosing a scale for masters
	Determining an appropriate master scale
	Setting the master s scale
	Creating antiscaled shapes that are never scaled

	Working with rotated pages
	Designing a grid
	Setting a template s grid
	Creating a master that works with the grid
	Using formulas to hold grid information

	Creating shapes that snap to the grid
	Adjusting a shape s alignment box
	Enclosing a shape in a larger alignment box
	Customizing a group s alignment box
	Changing the alignment box for 1- D shapes

	Aligning shapes to guides and guide points
	Guides in a rotated page
	Grouping guides with shapes


	Chapter 9  Packaging stencils and templates
	Packaging a shape solution
	Adding help to masters
	Associating help with a master
	Installing the shape help file
	Testing shape help

	Developing solutions for different systems
	Designing for different video systems
	Designing shapes that print well

	Testing masters
	Checking the consistency of masters
	Checking the master in the master drawing window
	Testing the master scale

	Finishing and testing a stencil
	Cleaning up masters in a stencil
	Cleaning up a stencil file
	Testing stencils

	Finishing and testing a template
	Cleaning up a template
	Testing templates

	Installing stencils and templates
	Protecting stencils and templates


	Part III  Extending Visio with Automation
	Chapter 10  Automation and Visio
	What is Automation?
	Planning an Automation solution with Visio
	Starting with smart shapes
	Providing a template
	Handling the rest in the program
	Deciding upon a program


	Chapter 11  Using Visio objects
	The Visio object model
	Accessing objects through properties
	Getting a document name: an example
	Creating a simple drawing: an example

	Getting and releasing objects
	Declaring object variables
	Using the Visio global object
	Using the ThisDocument object
	Getting Visio objects
	Referring to an object in a collection
	Iterating through a collection
	Releasing an object

	Using properties and methods
	Declaring variables for return values and arguments
	Getting and setting properties
	Using methods
	Using an object s default property

	Using compound object references
	Using the VBA files  provided on your Visio 5.0 CD
	Handling errors
	Making sure the program is running in the right context
	Making sure objects exist before attempting to retrieve them
	Making sure you get what you expect
	Checking for error values
	Restricting the scope and lifetime of object variables


	Chapter 12 Creating Visio drawings from a program
	Dropping masters in a drawing
	Getting the stencil
	Getting the master
	Getting the drawing page
	Dropping the master on the page

	Adding text to shapes
	Printing and saving documents
	Printing documents and pages
	Saving Visio documents

	Creating connected drawings
	Deciding what to glue
	Getting a Cell object
	Gluing the shape to another shape
	What can be glued to what
	Connecting shapes in an organization chart: an example

	Determining where to place shapes
	Arranging shapes on a page: an example
	Placing shapes in an organization chart: an example

	Creating a network diagram from a database: an example
	Opening the database
	Dropping the Ethernet master
	Controlling screen updating
	Placing a node in the diagram
	Labeling the nodes
	Connecting the nodes to the Ethernet shape
	Formatting node labels


	Chapter 13  Getting information from Visio drawings
	Getting information from documents and pages
	Getting the active page
	Getting a document
	Getting information about documents
	Getting pages and backgrounds
	Getting information about pages

	Getting information from shapes
	Getting a shape
	Identifying a shape s type
	Getting a shape s text

	Getting cells from shapes
	Getting the result of a formula

	Getting information from connected diagrams
	Getting a Connect object
	Getting Connect object properties
	Iterating through the connections on a page: an example

	Storing Visio data
	Retrieving and storing text
	Retrieving and storing numbers
	Storing Visio data in a database: an example


	Chapter 14  Working with drawings and shapes
	Creating and changing pages and backgrounds
	Adding pages to a drawing
	Creating and assigning background pages
	Changing page settings
	Setting up pages and backgrounds: an example

	Working with layers
	Identifying layers in a page or master
	Identifying the layers a shape is assigned to
	Assigning and removing shapes from layers
	Adding and deleting layers from pages and masters
	Changing layer settings

	Applying and creating styles
	Identifying the styles in a document
	Identifying and applying styles to shapes
	Preserving local formatting
	Creating a style
	Changing style attributes

	Creating and changing shapes
	Creating shapes by drawing
	Copying, cutting, deleting, and duplicating shapes
	Creating groups
	Creating masters from a program
	Working with selected shapes

	Working with formulas
	Getting a Cell object
	Changing cell formulas
	Replacing a formula with a result
	Overriding guarded formulas
	Moving shapes by setting formulas: an example

	Modifying a shape s sections and rows
	Adding sections and rows
	Deleting sections and rows
	Changing the type of a segment
	Working with inherited data
	Iterating through sections and rows
	Adding a Geometry section to a shape: an example

	Associating data with shapes
	Working with user- defined cells and custom properties
	Generating and using unique IDs


	Chapter 15 Handling events in Visio
	Handling events with ShapeSheet formulas
	Events that trigger formulas
	Functions for event formulas

	Writing code behind events
	Declaring a variable with events 
	Handling events with a sink object

	Handling events with Event objects
	Deciding the scope of an event
	Deciding the action to perform
	Indicating the event code
	Creating an Event object that runs an add- on
	Creating an Event object that sends a notification
	Getting information about events


	Chapter 16  Customizing the Visio user interface
	What you can customize
	Planning user interface changes
	Customizing a copy of the built- in Visio UI versus an existing custom UI
	Controlling the scope of your UI
	Controlling the persistence of your UI

	Making user interface changes
	Getting a UI object
	Getting a MenuSet, ToolbarSet, AccelTable, or StatusBar object
	Adding a menu and menu item
	Adding a toolbar button
	Setting properties of an item
	Removing an item from a user interface
	Removing a toolbar item
	Removing an accelerator

	Applying a custom user interface
	Creating, saving, and loading a custom user interface file

	Restoring the built- in Visio user interface

	Chapter 17  Running and distributing a solution
	Installing a Visio solution
	Where to install your files
	Visio file paths and folders

	Controlling when a program runs
	Distributing a program
	Distributing VBA programs
	Important licensing information


	Chapter 18  Using ActiveX controls in a Visio solution
	Adding ActiveX controls to a Visio drawing
	Working in design mode
	Inserting a control in a drawing
	Protecting controls from changes

	Handling a control s events
	Working with controls at run time
	About control names
	Getting a control from the OLEObjects collection

	Distributing controls in a Visio solution
	Listing shapes and custom properties in controls: an example

	Chapter 19  Programming Visio with Visual Basic
	The Visio object model
	Getting an instance of Visio
	Getting an active instance of Visio
	Creating an application object

	Creating a Visio document
	Handling errors
	Make sure the program is running in the right context

	Interpreting the command string Visio sends to your program
	Interacting with other programs

	Using the Visio type library
	The Visio type library and VISCONST. BAS
	Using global constants

	Using the Visual Basic files  provided on your Visio 5.0 CD
	Migrating from Visual Basic to VBA

	Chapter 20  Programming Visio with C++
	How Visio exposes objects
	C++ support in Visio
	Using the wrapper classes
	The interfaces behind the wrappers
	Obtaining a Visio Application object
	Values returned by Visio methods
	Arguments passed to Visio methods

	Handling Visio events in C++ programs
	Implementing a sink object
	Using CVisioAddonSink

	Visio libraries (VSLs)
	Advantages of Visio libraries
	The architecture of a Visio library
	Declaring and registering add-ons
	Running an add-on



	Part IV  Appendixes
	Appendix A  Arcs and splines in Visio
	About arcs
	Circular arcs
	Elliptical arcs
	Useful arc formulas

	Working with splines
	Splines: the basics
	About periodic and nonperiodic splines
	How spline data is organized in the ShapeSheet window
	Creating a spline in the ShapeSheet window: an example


	Appendix B  ShapeSheet sections, cell references, and index constants
	Sections, cells, and indexes for shapes
	Sections, cells, and indexes for pages
	Tab cells and row types
	General- purpose index constants
	Logical position constants
	Error constants



	Index

